导航:首页 > 电脑文件 > 电脑硬盘工作原理

电脑硬盘工作原理

发布时间:2022-05-20 06:14:06

A. 固态硬盘的工作原理是什么

固态硬盘原理是一种主要以闪存作为永久性存储器的计算机存储设备,此处固态主要相对于以机械臂带动磁头转动实现读写操作的磁盘而言,NAND或者其他固态存储以电位高低或者相位状态的不同记录0和1。

固态硬盘将数据保存在闪存中,而不是像硬盘驱动器之类的磁性系统。固态硬盘之所以如此命名,是因为它们不依赖于移动部件或旋转磁盘。相反,数据被保存到一组存储库中,就像可以随身携带的闪存一样。

固态硬盘的存储介质分为两种,一种是采用闪存作为存储介质,另外一种是采用DRAM作为存储介质。

1、基于闪存的固态硬盘:采用FLASH芯片作为存储介质,这也是通常所说的SSD。它的外观可以被制作成多种模样,例如:笔记本硬盘、微硬盘、存储卡、U盘等样式。

这种SSD固态硬盘最大的优点就是可以移动,而且数据保护不受电源控制,能适应于各种环境,适合于个人用户使用。

一般它擦写次数普遍为3000次左右,以常用的64G为例,在SSD的平衡写入机理下,可擦写的总数据量为64G X 3000 = 192000G,它像普通硬盘HDD一样,理论上可以无限读写。

2、基于DRAM的固态硬盘:采用DRAM作为存储介质,应用范围较窄。它仿效传统硬盘的设计,可被绝大部分操作系统的文件系统工具进行卷设置和管理,并提供工业标准的PCI和FC接口用于连接主机或者服务器。

应用方式可分为SSD硬盘和SSD硬盘阵列两种,是一种高性能的存储器,而且使用寿命很长,美中不足的是需要独立电源来保护数据安全。DRAM固态硬盘属于比较非主流的设备。

(1)电脑硬盘工作原理扩展阅读:

固态硬盘特点:

1、固态硬盘和机械硬盘相比读写速度远远胜出,这也是其最主要的功能,还具有低功耗、无噪音、抗震动、低热量的特点,这些特点可以延长靠电池供电的计算机设备运转时间。

2、固态硬盘防震抗摔性传统硬盘都是磁盘型的,数据储存在磁盘扇区里。而固态硬盘是使用闪存颗粒(即mp3、U盘等存储介质)制作而成,所以SSD固态硬盘内部不存在任何机械部件。

B. 电脑硬盘的工作原理是什么

现在的硬盘,无论是IDE还是SCSI,采用的都是"温彻思特“技术,都有以下特点:

1.磁头,盘片及运动机构密封。

2.固定并高速旋转的镀磁盘片表面平整光滑。

3.磁头沿盘片径向移动。

4.磁头对盘片接触式启停,但工作时呈飞行状态不与盘片直接接触。

C. 硬盘的工作原理是什么啊

硬盘工作的时候是告诉旋转的,所以硬盘在工作的时候是不能去动 的,很容易造成硬盘损伤!
硬盘的盘面划分成一个一个的同心圆,称为磁道,多个盘片的相同位置的磁道形成了一个同心圆柱,这就是硬盘的柱面,在每个磁道上又划分出相同存储容量的扇区作为存储数据的最小单位。要让硬盘正常工作,硬盘必须有相应的初始化和管理程序,其中有部分写在盘片的特定区域,这就是我们常说的固件区,对于不同的硬盘,这个区域的物理位置是不同的,所记录的程序的数量和功能也有差别

D. 硬盘的工作原理

为什么频繁读写会损坏硬盘呢?
磁头寿命是有限的,频繁的读写会加快磁头臂及磁头电机的磨损,频繁的读写磁盘某个区域更会使该区温度升高,将影响该区磁介质的稳定性还会导至读写错误,高温还会使该区因热膨涨而使磁头和碟面更近了(正常情况下磁头和碟面只有几个微米,更近还得了?),而且也会影响薄膜式磁头的数据读取灵敏度,会使晶体振荡器的时钟主频发生改变,还会造成硬盘电路元件失灵。
任务繁多也会导至ide硬盘过早损坏,由于ide硬盘自身的不足,,过多任务请求是会使寻道失败率上升导至磁头频繁复位(复位就是磁头回复到 0磁道,以便重新寻道)加速磁头臂及磁头电机磨损。

我先说一下现代硬盘的工作原理

现在的硬盘,无论是ide还是scsi,采用的都是"温彻思特“技术,都有以下特点:1。磁头,盘片及运动机构密封。2。固定并高速旋转的镀磁盘片表面平整光滑。3。磁头沿盘片径向移动。4。磁头对盘片接触式启停,但工作时呈飞行状态不与盘片直接接触。
盘片:硬盘盘片是将磁粉附着在铝合金(新材料也有用玻璃)圆盘片的表面上.这些磁粉被划分成称为磁道的若干个同心圆,在每个同心圆的磁道上就好像有无数的任意排列的小磁铁,它们分别代表着0和1的状态。当这些小磁铁受到来自磁头的磁力影响时,其排列的方向会随之改变。利用磁头的磁力控制指定的一些小磁铁方向,使每个小磁铁都可以用来储存信息。

盘体:硬盘的盘体由多个盘片组成,这些盘片重叠在一起放在一个密封的盒中,它们在主轴电机的带动下以很高的速度旋转,其每分钟转速达3600,4500,5400,7200甚至以上。

磁头:硬盘的磁头用来读取或者修改盘片上磁性物质的状态,一般说来,每一个磁面都会有一个磁头,从最上面开始,从0开始编号。磁头在停止工作时,与磁盘是接触的,但是在工作时呈飞行状态。磁头采取在盘片的着陆区接触式启停的方式,着陆区不存放任何数据,磁头在此区域启停,不存在损伤任何数据的问题。读取数据时,盘片高速旋转,由于对磁头运动采取了精巧的空气动力学设计,此时磁头处于离盘面数据区0.2---0.5微米高度的”飞行状态“。既不与盘面接触造成磨损,又能可靠的读取数据。

电机:硬盘内的电机都为无刷电机,在高速轴承支撑下机械磨损很小,可以长时间连续工作。高速旋转的盘体产生了明显的陀螺效应,所以工作中的硬盘不宜运动,否则将加重轴承的工作负荷。硬盘磁头的寻道饲服电机多采用音圈式旋转或者直线运动步进电机,在饲服跟踪的调节下精确地跟踪盘片的磁道,所以在硬盘工作时不要有冲击碰撞,搬动时要小心轻放。

原理说到这里,大家都明白了吧?

首先,磁头和数据区是不会有接触的,所以不存在磨损的问题。

其次,一开机硬盘就处于旋转状态,主轴电机的旋转可以达到4500或者7200转每分钟,这和你是否使用BT或者ed都没有关系,只要一通电,它们就在转.它们的磨损也和软件无关。

再次,寻道电机控制下的磁头的运动,是左右来回移动的,而且幅度很小,从盘片的最内层(着陆区)启动,慢慢移动到最外层,再慢慢移动回来,一个磁道再到另一个磁道来寻找数据。不会有什么大规模跳跃的(又不是青蛙)。所以它的磨损也是可以忽略不记的。

那么,热量是怎么来的呢?
首先是主轴电机和寻道饲服电机的旋转,硬盘的温度主要是因为这个。
其次,高速旋转的盘体和空气之间的摩擦。这个也是主要因素。
而硬盘的读写???
很遗憾,它的发热量可以忽略不记!!!!!!!!!!
硬盘的读操作,是盘片上磁场的变化影响到磁头的电阻值,这个过程中盘片不会发热,磁头倒是因为电流发生变化,所以会有一点热量产生。写操作呢?正好反过来,通过磁头的电流强度不断发生变化,影响到盘片上的磁场,这一过程因为用到电磁感应,所以磁头发热量较大。但是盘片本身是不会发热的,因为盘片上的永磁体是冷性的,不会因为磁场变化而发热。
但是总的来说,磁头的发热量和前面两个比起来,是小巫见大巫了。
热量是可以辐射传导的,那么高热量对盘片上的永磁体会不会有伤害呢?其实伤害是很小的,永磁体消磁的温度,远远高于硬盘正常情况下产生的温度。当然,要是你的机箱散热不好,那可就怪不了别人了。

我这里不得不说一下某人的几个错误:

一。高温是影响到磁头的电阻感应灵敏度,所以才会产生读写错误,和永磁体没有关系。

二。所谓的热膨胀,不会拉近盘体和磁头的距离,因为磁头的飞行是空气动力学原理,在正常情况下始终和盘片保持一定距离。当然要是你大力打击硬盘,那么这个震动。。。。。

三。所谓寻道是指硬盘从初使位置移动到指定磁道。所谓的复位动作,并不是经常发生的。因为磁道的物理位置是存放在cmos里面,硬盘并不需要移动回0磁道再重新出发。只要磁头一启动,所谓的复位动作就完成了,除非你重新启动电脑,不然复位动作就不会再发生。

四。ide硬盘和scsi硬盘的盘体结构是差不多的。只是scsi硬盘的接口带宽比同时代的ide硬盘要大,而且往往scsi卡往往都会有一个类似cpu的东西来减缓主cpu的占用率。仅此而已,所以希捷才会把它的scsi硬盘的技术用在ide硬盘上。

五。硬盘的读写是以柱面的扇区为单位的。柱面也就是整个盘体中所有磁面的半径相同的同心磁道,而把每个磁道划分为若干个区就是所谓的扇区了。硬盘的写操作,是先写满一个扇区,再写同一柱面的下一个扇区的,在一个柱面完全写满前,磁头是不会移动到别的磁道上的。所以文件在硬盘上的存储,并不是像一般人的认为,是连续存放在一起的(从使用者来看是一起,但是从操作系统底层来看,其存放不是连续的)。所以BT或者ed磁头的寻道一般都不会比你一边玩游戏一边听歌大。当然,这种情况只是单纯的下载或者上传而已,但是其实在这个过程中,谁能保证自己不会启动其它需要读写硬盘的软件?可能很多人都喜欢一边下载一边玩游戏或者听歌吧?更不用说windows本身就需要频繁读写虚拟内存文件了。所以,用BT下载也好,ed也好,对硬盘的折磨和平时相比不会太厉害的。

六。这里顺便说说flashget这个下载软件。为什么开太多线程会不好?首先,线程一多,cpu的占用率就高,换页动作也就频繁,从而虚拟内存读写频繁,至于为什么,只要学过系统原理的应该都知道,我这里就不说了。同理,BT和ED呢?同时从几个人那里下载一个文件,还有几个人同时在下载你的文件,这和fg开多线程是类似的。所以硬盘灯猛闪。但是,现在的硬盘是有缓存的,数据不是马上就写到硬盘上,而是先存放在缓存里面,,然后到一定量了再一次性写入硬盘。在fg里面再怎么设置都好,其实是先写到缓存里面的。但是这个过程也是需要cpu干预的,所以设置时间太短,cpu占用率也高,所以硬盘灯也还是猛闪的,因为虚拟文件在读写。

七。硬盘读写频繁,磁头臂在寻道伺服电机的驱动下移动频繁,但是对机械来说这点耗损虽有,其实不大。除非你的硬盘本身就有机械故障比如力臂变形之类的(水货最常见的故障)。真正耗损在于磁头,不断变化的电流会造成它的老化,但是和它的寿命相比。。。。。应该也是在合理范围内的。除非因为震动,磁头撞击到了盘体。

八。受高温影响的最严重的是机械的电路,特别是硬盘外面的那块电路板,上面的集成块在高温下会加速老化的。所以ibm的某款玻璃硬盘,虽然有坏道,但是一用某个软件,马上就不见了。再严重点的,换块线路板,也就正常了。就是这个原因.

打了这么多字,实在是太累了。
总之,硬盘会因为环境不好和保养不当而影响寿命,但是这绝对不是软件的错。
flashget也好,BT也好,ED也好,它们虽然对硬盘的读写频繁,但是还不至于比你一般玩游戏一般听歌对硬盘伤害大.说得更加明白的话,它们对硬盘的所谓耗损,其实可以忽略不记.不要因为看见硬盘灯猛闪,就在那里瞎担心.不然那些提供web服务和ftp服务的服务器,它们的硬盘读写之大,可绝非平常玩游戏,下软件的硬盘可比的。
硬盘有一个参数叫做连续无故障时间。它是指硬盘从开始运行到出现故障的最长时间,单位是小时,英文简写是mtbf。一般硬盘的mtbf至少在30000或40000小时。具体情况可以看硬盘厂商的参数说明。这个连续无故障时间,大家可以自己除一下,看看是多少年。然后大家自己想想,自己的硬盘平时连续工作最久是多长时间。
目前我使用的机器,已经连续开机1年了,除了中途有几次关机十几分钟来清理灰尘外,从来没有停过。另外还有三台使用scsi硬盘的服务器,是连续两年没有停过了,硬盘的发热量绝非平常ide硬盘可比(1万转的硬盘啊)。

最后补充一下若干点:

一。硬盘最好不要买水货或者返修货。水货在运输过程中是非常不安全的,虽然从表面上看来似乎无损伤,但是有可能在运输过程中因为各种因素而对机械体造成损伤。返修货就更加不用说了。老实说,那些埋怨硬盘容易损坏的人,你们应该自己先看看,自己的硬盘是否就是这些货色。
二。硬盘的工作环境是需要整洁的,特别是注意不要在频繁断电和灰尘很多的环境下使用硬盘。机箱要每隔一两个月清理一下灰尘。
三。硬盘的机械最怕震动和高温。所以环境要好,特别是机箱要牢固,以免共震太大。电脑桌也不要摇摇晃晃的。
四。要经常整理硬盘碎片。这里有一个大多数人的误解,一般人都以为硬盘碎片会加大硬盘耗损,其实不是这样的。硬盘碎片的增多本身只是会让硬盘读写所花时间比碎片少的时候多而已,对硬盘的耗损是可以忽略的(我在这里只说一个事实,目前网络上的服务器,它们用得最多的操作系统是unix,但是在unix下面是没有磁盘碎片整理软件的。就连微软的nt4,本身也是没有的)。不过,因为磁头频繁的移动,造成读写时间的加大,所以cpu的换页动作也就频繁了,而造成虚拟文件(在这里其实准确的说法是换页文件)读写频繁,从而加重硬盘磁头寻道的负荷。这才是硬盘碎片的坏处。
五。在硬盘读写时尽量避免忽然断电,冷启动和做其他加重cpu负荷的事情(比如在玩游戏时听歌,或者在下载时玩大型3d游戏),这些对硬盘的伤害比一般人想象中还要大。原因我就不说了,打字太累。

E. 机械硬盘的工作原理是什么

这个问题太广泛~估计一本书都写不完~
磁头根据电磁感应介质上电阻值随磁场变化~把电流变化的磁信息转化为电信号传输到外部的过程。

F. 电脑硬盘的内部构造及原理是不是和光驱一样啊

不一样。
一、硬盘的内部构造分为:磁头、磁道、扇区、和柱面。
磁头:磁头是硬盘中最昂贵的部件,也是硬盘技术中最重要和最关键的一环。传统的磁头是读写合一的电磁感应式磁头,但是,硬盘的读、写却是两种截然不同的操作,为此,这种二合一磁头在设计时必须要同时兼顾到读/写两种特性,从而造成了硬盘设计上的局限。而MR磁头(Magnetoresistive heads),即磁阻磁头,采用的是分离式的磁头结构:写入磁头仍采用传统的磁感应磁头(MR磁头不能进行写操作),读取磁头则采用新型的MR磁头,即所谓的感应写、磁阻读。这样,在设计时就可以针对两者的不同特性分别进行优化,以得到最好的读/写性能。另外,MR磁头是通过阻值变化而不是电流变化去感应信号幅度,因而对信号变化相当敏感,读取数据的准确性也相应提高。而且由于读取的信号幅度与磁道宽度无关,故磁道可以做得很窄,从而提高了盘片密度,达到每平方英寸200MB,而使用传统的磁头只能达到每平方英寸20MB,这也是MR磁头被广泛应用的最主要原因。MR磁头已得到广泛应用,而采用多层结构和磁阻效应更好的材料制作的GMR磁头(Giant Magnetoresistive heads)也逐渐开始普及。
磁道:当磁盘旋转时,磁头若保持在一个位置上,则每个磁头都会在磁盘表面划出一个圆形轨迹,这些圆形轨迹就叫做磁道。这些磁道用肉眼是根本看不到的,因为它们仅是盘面上以特殊方式磁化了的一些磁化区,磁盘上的信息便是沿着这样的轨道存放的。相邻磁道之间并不是紧挨着的,这是因为磁化单元相隔太近时磁性会相互产生影响,同时也为磁头的读写带来困难。一张1.44MB的3.5英寸软盘,一面有80个磁道,而硬盘上的磁道密度则远远大于此值,通常一面有成千上万个磁道。磁道的磁化方式一般由磁头迅速切换正负极改变磁道所代表的0和1。
扇区:磁盘上的每个磁道被等分为若干个弧段,这些弧段便是磁盘的扇区,每个扇区可以存放512个字节的信息,磁盘驱动器在向磁盘读取和写入数据时,要以扇区为单位。1.44MB3.5英寸的软盘,每个磁道分为18个扇区。
柱面:硬盘通常由重叠的一组盘片构成,每个盘面都被划分为数目相等的磁道,并从外缘的“0”开始编号,具有相同编号的磁道形成一个圆柱,称之为磁盘的柱面。磁盘的柱面数与一个盘单面上的磁道数是相等的。无论是双盘面还是单盘面,由于每个盘面都只有自己独一无二的磁头,因此,盘面数等于总的磁头数。所谓硬盘的CHS,即Cylinder(柱面)、Head(磁头)、Sector(扇区),只要知道了硬盘的CHS的数目,即可确定硬盘的容量,硬盘的容量=柱面数*磁头数*扇区数*512B。
二、光驱的内部构造:
(1)激光头组件:包括光电管、聚焦透镜等组成部分,配合运行齿轮机构和导轨等机械组成部分,在通电状态下根据系统信号确定、读取光盘数据并通过数据带将数据传输到系统。
(2)主轴电机:光盘运行的驱动力,在光盘读取过程的告诉运行中由提供快速的数据定位功能。
(3)光盘托架:在开启和关闭状态下的光盘承载体。
(4)启动机构:控制光盘托架的进出和主轴马达的启动,通电运行时,启动机构将使包括主轴马达和激光的头组件的伺服机构都处于半加载状态中 。

G. 硬盘的工作原理

硬盘的主要构件包括马达、盘片、磁头和控制系统等等。其中,盘片和磁头是硬盘最为核心的部件,它们负担着数据的存储以及读取和写入的重任。
我们俗称的“玻璃盘片”或者“铝盘片”仅仅指的是盘片基体材料,盘片的结构其实并不简单。为了能够记录大量的信息,并且快速准确地被磁头读取和写入,需要先进的磁记录物质和辅助涂层。一张硬盘盘片的单面由多个不同的层复合而成,最上层是有机氟高分子材料组成的润滑层,保证磁头更加平稳地运行;接下来是由坚硬的碳材料构成的保护层,保护数据层不受物理损坏。再下面的磁记录层呈三明治结构,在两层钴-铂-铬-硼磁记录介质层(反铁磁性耦合介质,AFC)中间夹有厚度仅有0.6nm的金属钌层(仙女之尘技术)。磁记录层之下还有铬底层,然后才是盘片基体材料。
硬盘存储密度的飞速发展离不开磁头技术的配合。磁头技术也经历了多次革命,为了满足越来越高的存储需要,磁畴的尺寸越来越小,因此磁头的尺寸也变得越来越小,但同时效率却越来越高。从老式的锰铁磁体磁头到磁阻磁头,目前大量使用的巨磁阻磁头也已历经数代,未来还将出现隧道磁阻磁头和电流垂直平面磁头等更加先进的磁头。

H. 电脑硬盘的工作原理

1.硬盘的磁头

一块硬盘存取数据的工作完全都是依靠磁头来进行,换句话说,没有磁头,也就没有实际意义上的硬盘。那么,究竟什么是磁头呢?磁头就是硬盘进行读写的“笔尖”,通过全封闭式的磁阻感应读写,将信息记录在硬盘内部特殊的介质上。硬盘磁头的发展先后经历了亚铁盐类磁头(MonolithicHead)、MIG(MetalInGap)磁头和薄膜磁头(ThinFilmHead)、MR磁头等几个阶段。前3种传统的磁头技术都是采取了读写合一的电磁感应式磁头,在设计方面因为同时需要兼顾读/写两种特性,因此也造成了硬盘在设计方面的局限性。

第4种磁阻磁头在设计方面引入了全新的分离式磁头结构,写入磁头仍沿用传统的磁感应磁头,而读取磁头则应用了新型的MR磁头,即所谓的感应写、磁阻读,针对读写的不同特性分别进行优化,以达到最好的读写性能。

除上述几种磁头技术外,技术更为创新、采用多层结构、磁阻效应更好的材料制作的GMR磁头(GiantMagnetoResistiveheads,巨磁阻磁头),可以使目前硬盘的容量在此基础上再提高10倍以上。

2.硬盘的盘面

如果把硬盘磁头比喻作“笔”的形容成立,那么所谓硬盘的盘面自然就是这“笔”下的“纸”。如果您曾经有幸打开过自己的硬盘,可以发现硬盘内部是由金属磁盘组成的,有单盘片的,有双盘片的,也有多盘片的。它们通过表面的磁物质结合在一起。与平时使用的那些普通软磁盘存储介质的不连续颗粒相比,这种特殊物质的金属磁盘具有更高的记录密度和更强的安全性能。

目前市场上主流硬盘的盘片大都是采用了金属薄膜磁盘构成,这种金属薄膜磁盘较之普通的金属磁盘具有更高的剩磁(Remanence:经消磁后,残留在磁介质上的磁感应)和高矫顽力(CoerciveForce:作用于磁化材料以去除剩磁的反向磁通强度),因此也被硬盘厂商普遍采用。

与金属薄膜磁盘相比,用玻璃做为新的盘片,有利于把硬盘盘片做得更平滑,单位磁盘密度也会更高。同时由于玻璃的坚固特性,新一代的玻璃硬磁盘在性能方面也会更加稳定。不过也有一点问题,如果一旦把玻璃材质作为硬盘基片,玻璃材质较之金属材质的脆弱性就会表现出来。

3.硬盘的马达

有了“笔”和“纸”,要让“笔”能够在“纸”上顺利地写字,当然还要有“手”的控制,而这双控制磁头在磁片上高速工作的“手”就应该是硬盘主轴上的马达了。硬盘正因为有了马达,才可以带动磁盘片在真空封闭的环境中高速旋转,马达高速运转时所产生的浮力使磁头飘浮在盘片上方进行工作。硬盘在工作时,通过马达的连动将需要存取资料的扇区带到磁头下方,马达的转速越快,等待存取记录的时间也就越短。从这个意义上讲,硬盘马达的转速在很大程度上决定了硬盘最终的速度。

在当今硬盘不断向着超大容量迈进的同时,硬盘的速度也在不断提高,这当然就要求硬盘的马达也必须能够跟上技术时代飞速发展的步伐。进入2000年后,5400rpm的硬盘即将成为历史,7200rpm势必成为2000年乃至今后一段时间的主流产品。速度方面的提升对于硬盘的马达而言,自然也是提出了更高的要求。7200rpm、10000rpm甚至15000rpm的硬盘马达自然不会再是传统意义上的普通滚珠轴承马达,因为硬盘转速的不断提高会带来诸如磨损加剧、温度升高、噪声增大等一系列负面问题。传统的普通滚珠轴承马达自然无法妥善解决这些问题,于是曾广泛应用在精密机械工业上的液态轴承马达(Fluiddynamicbearingmotors)被引入到硬盘技术中。与传统的滚珠轴承马达不同,液态轴承马达使用的是黏膜液油轴承,这种特殊的轴承以油膜代替了原先的滚珠,一方面避免了与金属面的直接磨擦,将传统马达所带来的噪声及高温降至最低;另一方面,油膜可以有效地吸收外来的震动,使硬盘的抗震能力由以往的150G提高至1200G;再一个方面,从理论上讲,液态轴承马达无磨损,使用寿命可以达到无限长,虽然我们无法通过这一点就奢想自己的新硬盘能够“长生不老”,但最起码可以延长使用寿命。

4.硬盘的转速

硬盘的转速(RotateSpeed),正像我们上文所述,硬盘的马达直接决定了硬盘的转速。理论上讲,硬盘的转速越快越好,因为较高的硬盘转速可以极大地缩短硬盘的平均寻道时间和实际读写时间。但是,硬盘的高转速带给硬盘的负面影响就是转速越快,硬盘表面的发热量越大,如果再加上机箱散热不佳和其他周边散热过多的原因,很可能造成机器运行不稳定。也正是这个原因,目前市场上绝大多数笔记本电脑中的专用硬盘,其转速一般都不会超过4500rpm。

5.硬盘的平均寻道时间、平均访问时间和平均潜伏时间

所谓硬盘的平均寻道时间(AverageSeekTime),其实就是指硬盘在盘面上移动读写头至指定磁道寻找相应目标数据所用的时间。我们在描述硬盘读取数据能力时,目前主要以毫秒为计算单位,而硬盘读取数据一次大多在6~14ms之间。当硬盘的单碟容量增大时,磁头的寻道动作和移动距离会相应减少,这样也就导致硬盘本身的平均寻道时间减少,从而提高了硬盘传输数据的速度。

而平均访问时间(AverageAccessTime),指的就是平均寻道时间与平均潜伏时间的总和。平均访问时间基本上也就能够代表硬盘找到某一数据所用的时间。平均访问时间越短越好,一般情况下应该控制在11~18ms之间,建议用户选择那些平均访问时间在15ms以下的硬盘。

所谓平均潜伏时间(AverageLatencyTime),其准确的概念定位就是指相应磁道旋转到磁头下方的时间,一般情况下在2~6ms之间。

6.硬盘的外部传输率和内部传输率

所谓硬盘的外部数据传输率(ExternalTransferRate)就是指电脑通过接口将数据交给硬盘的传输速度,而内部数据传输率(InternalTransferRate)就是指硬盘将这些数据记录在自身盘片上的速度,也称最大或最小持续传输率(SustainedTransferRate)。从实际应用方面分析,硬盘的外部数据传输率比其内部传输率速度要快很多,在它们之间有一块缓冲区可以缓解二者的速度差距。而从硬盘缓冲区读取数据的速度又称之为突发数据传输率(BurstdataTransferRate)。

普通的EIDE硬盘理论上的传输速率,都已达到了17.5MB/s左右,而采用UltraDMA/33、UltraDMA/66技术后,传输率瞬间速度便可以达到33.3MB/s和66MB/s,至于UltraDMA/100和UltraDMA/160,也是指在这个速度上的提升。

7.硬盘的缓冲区

所谓硬盘的缓冲区(硬件缓冲)就是指硬盘本身的高速缓存(Cache),它能够大幅度地提高硬盘整体性能。高速缓存其实就是指硬盘控制器上的一块存取速度极快的DRAM内存,分为写通式和回写式。所谓写通式,就是指在读硬盘时系统先检查请求,寻找所要求的数据是否在高速缓存中。如果在则称为被命中,缓存就会发送出相应的数据,磁头也就不必再向磁盘访问数据,从而大幅度改善硬盘的性能。

所谓回写式,指的是在内存中保留写数据,当硬盘空闲时再次写入。从这一点上而言,回写式具有高于写通式的系统性能。较早期的硬盘大多带有128KB、256KB、512KB等高速缓存,目前的高档硬盘高速缓存大多已经达到1MB、2MB甚至更高,在高速缓存的取材上也采用了速度比DRAM更快的同步内存SDRAM,确保硬盘性能更为卓越。

硬盘技术

硬盘所采用的技术,目前主要包括3个方面,一是磁头技术,二是防震技术,三是数据保护技术。随着各大制造厂商的技术竞争,目前这3个方面的技术要点也逐渐走向融合。

1.磁头技术

(1)磁阻磁头技术(Magneto-ResistiveHead)

磁阻磁头技术是一种比较传统的硬盘磁头技术,是完全基于磁电阻效应工作的,其核心就是一片金属材料,其电阻随磁场的变化而变化。应用这种磁阻磁头技术的原理就是:通过磁阻元件连着的一个十分敏感的放大器可以测出微小的电阻变化。所以越先进的MR技术可以提高记录密度来记录数据,增加单盘片容量即硬盘的最高容量,进而提高数据传输率。

(2)巨型磁阻磁头(GMR)

这是MR磁阻磁头技术的换代技术,目前绝大多数的硬盘产品都应用了这种技术。采用了巨型磁阻磁头技术的硬盘,其读、写工作是分别由不同的磁头来完成的,这种变化从而可以有效地提高硬盘的工作效率,并使增大磁道密度成为可能。

(3)OAW(光学辅助温式技术)

OAW是美国希捷公司新研制技术代号,很可能是未来磁头技术的发展方向。应用这种OAW技术,未来的硬盘可以在1英寸面积内写入105000以上的磁道,单碟容量更是有望突破36GB。

2.防震技术

(1)SPS防震保护系统

这是昆腾公司在其火球7代(EX)系列之后普遍采用的硬盘防震动保护系统。其设计思路就是分散外来冲击能量,尽量避免硬盘磁头和盘片之间的意外撞击,使硬盘能够承受1000G以上的意外冲击力。

(2)ShockBlock防震保护系统

虽然这是Maxtor公司的专利技术,但其设计思路与防护风格与昆腾公司的SPS技术有着异曲同工之妙,也是为了分散外来的冲击能量,尽量避免磁头和盘片相互撞击,但它能承受的最大冲击力却可以达到1500G甚至更高。

3.数据保护技术

(1)S.M.A.R.T技术

S.M.A.R.T技术是目前绝大多数硬盘已经普遍采用的通用安全技术,而应用S.M.A.R.T技术,用户们能够预先测量出某些硬盘的特性。举个例子,如监测硬盘磁头的飞行高度。因为一旦磁头开始出现飞得太高或太低的情况,硬盘在运行中就极有可能报错,S.M.A.R.T技术就是一种对硬盘故障预先发出报警的廉价数据保护。

当然,利用S.M.A.R.T技术可预测的硬盘故障一般是硬盘性能恶化的结果,其中约60%为机械性质的,40%左右则是对软性故障的有效预测。应用S.M.A.R.T技术可以有效地防止并减少硬盘数据丢失,而预先报警系统更能够让电脑用户及时掌握自己硬盘的性能和实际使用状况。

(2)数据卫士

西部数据(WD)公司的数据卫士能够在硬盘工作的空余时间里,每8个小时便自动执行硬盘扫描、检测、修复盘片的各扇区等步骤。以上操作完全是自动运行,无需用户干预与控制,特别是对初级用户与不懂硬盘维护的用户十分适用。

(3)DPS(数据保护系统)

昆腾公司在推出火球7代硬盘以后,从8代开始的所有硬盘中,都内建了所谓的DPS(数据保护系统)系统模式。DPS系统模式的工作原理是在其硬盘的前300MB内,存放操作系统等重要信息,DPS可在系统出现问题后的90s内自动检测恢复系统数据,如果不行,则启用随硬盘附送的DPS软盘,进入程序后DPS系统模式会自动分析造成故障的原因,尽量保证用户硬盘上的数据不受损失。

(4)MaxSafe技术

MaxSafe技术是迈拓公司在其金钻2代以后普遍采用的技术。MaxSafe技术的核心就是将附加的ECC校验位保存在硬盘上,使硬盘在读写过程中,每一步都要经过严格的校验,以此来保证硬盘数据的完整性。

4.其他综合技术方面

(1)PRML(,硬盘最大相似性技术)读取技术利用PRML读取技术可以使单位硬盘盘片存储更大量的信息。在增加硬盘容量的同时,还可以有效地提高硬盘数据的读取和传输率。

(2)UltraDSP(超级数字信号处理器)技术及接口技术

应用UltraDSP进行数学运算,其速度较一般CPU快10~50倍。采用UltraDSP技术,单个的DSP芯片可以同时提供处理器及驱动接口的双重功能,以减少其他电子元件的使用,可大幅度地提高硬盘的速度和可靠性。

接口技术可以极大地提高硬盘的最大外部传输率,最大的益处在于,可以把数据从硬盘直接传输到主内存而不占用更多的CPU资源,提高系统性能。Maxtor公司2000年最新的钻石9代和金钻4代都采用了双DSP芯片技术,将硬盘的系统性能提升到极致。

(3)3DDefenseSystem(3D保护系统)

3DDefenseSystem是美国希捷公司独有的一种硬盘保护技术。3DDefenseSystem中主要包括了DriveDefense(磁盘保护)、DataDefense(数据保护)及DiagnosticDefense(诊断保护)等3个方面的内容。

DriveDefense(磁盘保护)。这里面又包括:G-Force保护,可帮助希捷硬盘承受业界内最高的非工作状态下的震动,即在2ms内震动力即使达到350G,也不会使硬盘损坏;SeaShield保护,提供ESD及安全处理,特别是对PCBA(PrintedCircuitBoardAssembly,印刷电路集成板);SeaShell保护,这是一种可以替换原有ESD(Elestro-StaticDischarge)的硬盘工具包,通过这一保护系统可为硬盘提供更多的保护。

DataDefense(数据保护)。这里面又包括了希捷独创的Multidrive系统(SAMS)。所谓SAMS就是通过减小硬盘的旋转振动来最大程度地减少对硬盘的损坏;ECC(ErrorCorrectionCode,错误检正代码),即为高性能硬盘提供on-the-fly检正,还有就是对数据恢复提供最大限度Firmware(固件)检正,因此可以正确完整地进行读、恢复数据;SafeSaring,当硬盘断电及重新来电后,利用SafeSaring技术可以确保硬盘磁头回到同样的扇区,保证数据不丢失;End-to-EndPathProtection,确保数据在主机与磁盘之间传输的完整性。

DiagnosticDefense(诊断保护)。这里面也包括了SeaTools——诊断工具软件,可以帮助用户诊断系统是否存在问题,以及诊断错误是否由其他硬件及软件产生。另外,SeaTools还可以在ATA及SCSI产品中工作,可以应用于所有老旧的希捷硬盘;增强型的S.M.A.R.T功能,可以在硬盘发生错误与问题之前作为预测并向用户发出警告;Web-BasedTools(基于Web的工具),允许用户标识及解决一些非硬盘相关错误,如病毒等,也可以检正文件系统,解决硬件冲突以避免不必要的硬盘返修;DLD(DriveLoggingDiagnostics)——捕获不可恢复性数据错误,实质上就是交互性的诊断工作。

硬盘的工作模式

从主板的支持度来看,目前硬盘的工作模式主要有3种:NORMAL、LBA和LARGE模式。

NORMAL即我们平时讲的普通模式,也是最早的IDE方式。在此方式下对硬盘访问时,BIOS和IDE控制器对参数不作任何转换。该模式支持的最大柱面数为1024,最大磁头数为16,最大扇区数为63,每扇区字节数为512KB。因此支持最大硬盘容量为:512KB×63×16×1024=528MB。在此模式下即使硬盘的实际物理容量很大,但可访问的硬盘空间也只能是528MB。

LBA(LogicalBlockAddressing)即逻辑块寻址模式。应用这种模式所管理的硬盘空间突破了528MB的瓶颈,可达8.4GB。在LBA模式下,设置的柱面、磁头、扇区等参数并不是实际硬盘的物理参数。在访问硬盘时,由IDE控制器把由柱面、磁头、扇区等参数确定的逻辑地址转换为实际硬盘的物理地址。在LBA模式下,可设置的最大磁头数为255,其余参数与普通模式相同。

由此可计算出可访问的硬盘容量为:512KB×63×255×1024=8.4GB。LARGE又称为大硬盘管理模式。当硬盘的柱面超过1024而又不为LBA支持时可采用此种模式。LARGE模式采取的方法是把柱面数除以2,把磁头数乘以2,其结果总容量不变。例如,在NORMAL模式下柱面数为1220,磁头数为16,进入LARGE模式则柱面数为610,磁头数为32。这样在DOS中显示的柱面数小于1024,即可正常工作。

I. 电脑硬盘什么样子的啊结构什么样啊工作原理是什么样的

硬盘(港台称之为硬盘,英文名:Hard Disk Drive 简称HDD 全名 温彻斯特式硬盘)是电脑主要的存储媒介之一,由一个或者多个铝制或者玻璃制的盘片组成。这些盘片外覆盖有铁磁性材料。绝大多数硬盘都是固定硬盘,被永久性地密封固定在硬盘驱动器中。 查看精彩图册
目录硬盘硬盘种类硬盘技术机械硬盘接口ATAIDESATASATA ⅡSATA ⅢSCSI光纤通道SAS接口尺寸制造厂商物理结构1.磁头2.磁道3.扇区4.柱面逻辑结构3D参数基本Int 13H 调用现代硬盘结构扩展Int 13H基本参数一、容量二、转速三、平均访问时间四、传输速率五、缓存数据保护扩展分区相关名词磁头数薄膜感应(TFI)磁头网络硬盘固态硬盘DNA硬盘故障表现维护保养1.读写过程中且忌断电2.保持良好的工作环境3.防止受震动4.减少频繁操作5.恰当的使用时间6.定期整理碎片7.使用稳定的电源供电8、不要强制性关机虚拟硬盘展开硬盘硬盘种类硬盘技术机械硬盘接口ATAIDESATASATA ⅡSATA ⅢSCSI光纤通道SAS接口尺寸制造厂商物理结构1.磁头2.磁道3.扇区4.柱面逻辑结构3D参数基本Int 13H 调用现代硬盘结构扩展Int 13H基本参数一、容量二、转速三、平均访问时间四、传输速率五、缓存数据保护扩展分区相关名词磁头数薄膜感应(TFI)磁头网络硬盘固态硬盘DNA硬盘故障表现维护保养1.读写过程中且忌断电2.保持良好的工作环境3.防止受震动4.减少频繁操作5.恰当的使用时间6.定期整理碎片7.使用稳定的电源供电8、不要强制性关机虚拟硬盘展开
编辑本段硬盘硬盘种类硬盘分为固态硬盘(SSD)和机械硬盘(HDD);SSD采用闪存颗粒来存储,HDD采用磁性盘片来存储。硬盘技术磁头复位节能技术:通过在闲时对磁头的复位来节能。
西部数据在最新的硬盘上采用了该技术来减少空闲时功耗。
多磁头技术:通过在同一盘片增加多个磁头同时的读或写来为硬盘提速,或同时在多盘片同时利用磁头来读或写来为磁盘提速。目前希捷和日立数据的部分型号采用了该技术。多用于服务器和数据库中心。
机械硬盘1.1956年,IBM的IBM 350 RAMAC是现代硬盘的雏形,它相当于两个冰箱的体积,不过其储存容量只有5MB。1973年IBM 3340问世,它拥有“温彻斯特”这个绰号,来源于他两个30MB的储存单元,恰是当时出名的“温彻斯特来福枪”的口径和填弹量。至此,硬盘的基本架构被确立。
2.1980年,两位前IBM员工创立的公司开发出5.25英寸规格的5MB硬盘,这是首款面向台式机的产品,而该公司正是希捷(SEAGATE)公司。
3.80年代末,IBM公司推出MR(Magneto Resistive磁阻)技术令磁头灵敏度大大提升,使盘片的储存密度较之前的20Mbpsi(bit/每平方英寸)提高了数十倍,该技术为硬盘容量的巨大提升奠定了基础。1991年,IBM应用该技术推出了首款3.5英寸的1GB硬盘。
4.1970年到1991年,硬盘盘片的储存密度以每年25%~30%的速度增长;从1991年开始增长到60%~80%;至今,速度提升到100%甚至是200%,从1997年开始的惊人速度提升得益于IBM的GMR(Giant
Magneto Resistive,巨磁阻)技术,它使磁头灵敏度进一步提升,进而提高了储存密度。
5.1995年,为了配合Intel的LX芯片组,昆腾(Quantum)与Intel携手发布UDMA 33接口——EIDE标准将原来接口数据传输率从16.6MB/s提升到了33MB/s 同年,希捷开发出液态轴承(FDB,Fluid
Dynamic Bearing)马达。所谓的FDB就是指将陀螺仪上的技术引进到硬盘生产中,用厚度相当于头发直径十分之一的油膜取代金属轴承,减轻了硬盘噪音与发热量。
6.1996年,希捷收购康诺(Conner Peripherals)。
7.1998年2月,UDMA66规格面世。
8.1999年,容量高达10GB的ATA硬盘面世。
9.2000年2月23日,希捷发布了转速高达15,000RPM的Cheetah X15系列硬盘。
3月16日,硬盘领域又有新突破,第一款"玻璃硬盘"问世。
10月,迈拓(Maxtor)收购昆腾。
10.2001年:新的磁头技术,此时的全部硬盘几乎均采用GMR,该技术目前最新的为第四代GMR磁头技术。
11.2003年1月,日立宣布完成20.5亿美元的收购IBM硬盘事业部计划,并成立日立环球储存科技公司(Hitachi Global Storage
Technologies,Hitachi GST)。
12.2005年日立环储和希捷都宣布了将开始大量采用磁盘垂直写入技术(perpendicular recording),该原理是将平行于盘片的磁场方向改变为垂直(90度),更充分地利用的储存空间。
13.2005年12月21日,硬盘制造商希捷宣布收购迈拓(Maxtor)。
14.2007年1月,日立环球储存科技宣布将会发售全球首只1Terabyte的硬盘,比原先的预定时间迟了一年多。硬盘的售价为399美元,平均每美元可以购得2.75GB硬盘空间。
15.2007年11月,Maxtor硬盘出厂的预先格式化的硬盘,被发现已植入会盗取在线游戏的帐号与密码的木马。
16.2010年12月,日立环球存储科技公司日前同时宣布,将向全球OEM厂商和部分分销合作伙伴推出3T
硬盘(15张)B、2TB和1.5TB Deskstar
7K3000硬盘系列。
17.2011年3月8日凌晨,WD西部数据公司宣布,将以现金加股票的形式,出资43亿美元收购日立全资子公司,同为世界级硬盘大厂的日立环球存储技术公司(HGST)。
编辑本段接口ATA全称Advanced
Technol
ogy Attachment,是用传统的40-pin 并口数据线连接主板与硬盘的,外部接口速度最大为133MB/s,因为并口线的抗干扰性太差,且排线占空间,不利计算机散热,将逐渐被SATA 所取代。
IDEIDE的英文全称为“Integrated Drive
Electronics”,即“电子集成驱动器”,俗称PATA并口。
SATA使用SATA(Serial ATA)口的硬盘又叫串口硬盘,是未来PC机硬盘的趋势。2001年,由Intel、APT、Dell、IBM、希捷、迈拓这几大厂商组成的Serial ATA委员会正式确立了Serial ATA
1.0规范,2002年,虽然串行ATA的相关设备还未正式上市,但Serial ATA委员会已抢先确立了Serial ATA 2.0规范。Serial
ATA采用串行连接方式,串行ATA总线使用嵌入式时钟信号,具备了更强的纠错能力,与以往相比其最大的区别在于能对传输指令(不仅仅是数据)进行检查,如果发现错误会自动矫正,这在很大程度上提高了数据传输的可靠性。串行接口还具有结构简单、支持热插拔的优点。
SATA ⅡSATA
Ⅱ是芯片巨头Intel英特尔与硬盘巨头Seagate希捷在SATA的基础上发展起来的,其主要特征是外部传输率从SATA的150MB/s进一步提高到了300MB/s,此外还包括NCQ(Native Command Queuing,原生命令队列)、端口多路器(Port
Multiplier)、交错启动(Staggered Spin-up)等一系列的技术特征。但是并非所有的SATA硬盘都可以使用NCQ技术,除了硬盘本身要支持NCQ之外,也要求主板芯片组的SATA控制器支持NCQ。
SATA
Ⅲ正式名称为“SATARevision3.0”,是串行ATA国际组织(SATA-IO)在2009年5月份发布的新版规范,主要是传输速度翻番达到6Gbps,同时向下兼容旧版规范“SATARevision2.6”(也就是现在俗称的SATA3Gbps),接口、数据线都没有变动。SATA3.0接口技术标准是2007上半年英特尔公司提出的,由英特尔公司的存储产品架构设计部技术总监Knut Grimsrud负责,Knut Grimsrud表示,SATA3.0的传输速率将达到6Gbps,将在SATA2.0的基础上增加1倍。
SCSISCSI的英文全称为“Small Computer System
Interface”(小型计算机系统接口),是同IDE(ATA)完全不同的接口,IDE接口是普通PC的标准接口,而SCSI并不是专门为硬盘设计的接口,是一种广泛应用于小型机上的高速数据传输技术。SCSI接口具有应用范围广、多任务、带宽大、CPU占用率低,以及热插拔等优点,但较高的价格使得它很难如IDE硬盘般普及,因此SCSI硬盘主要应用于中、高端服务器和高档工作站中。
光纤通道光纤通道的英文拼写是Fibre Channel,和SCIS接口一样光纤通道最初也不是为硬盘设计开发的接口技术,是专门为网络系统设计的,但随着存储系统对速度的需求,才逐渐应用到硬盘系统中。光纤通道硬盘是为提高多硬盘存储系统的速度和灵活性才开发的,它的出现大大提高了多硬盘系统的通信速度。光纤通道的主要特性有:热插拔性、高速带宽、远程连接、连接设备数量大等。
光纤通道是为在像服务器这样的多硬盘系统环境而设计,能满足高端工作站、服务器、海量存储子网络、外设间通过集线器、交换机和点对点连接进行双向、串行数据通讯等系统对高数据传输率的要求。
SAS接口SAS(Serial
Attached SCSI)即串行连接SCSI,是新一代的SCSI技术,和现在流行的Serial ATA(SATA)硬盘相同,都是采用串行技术以获得更高的传输速度,并通过缩短连结线改善内部空间等。SAS是并行SCSI接口之后开发出的全新接口。此接口的设计是为了改善存储系统的效能、可用性和扩充性,并且提供与SATA硬盘的兼容性。
编辑本段尺寸⒊5英寸台式机硬盘;风头正劲,广泛用于各种台式计算机。
硬盘内部⒉5英寸笔记本硬盘;广泛用于笔记本电脑,桌面一体机,移动硬盘及便携式硬盘播放器。
⒈8英寸微型硬盘;广泛用于超薄笔记本电脑,移动硬盘及苹果播放器。
⒈3英寸微型硬盘;产品单一,三星独有技术,仅用于三星的移动硬盘。

⒈0英寸微型硬盘;最早由IBM公司开发,MicroDrive微硬盘(简称MD)。因符合CFⅡ标准,所以广泛用于单反数码相机。
0.85英寸微型硬盘;产品单一,日立独有技术,已知用于日立的一款硬盘手机,前Rio公司的几款MP3播放器也采用了这种硬盘。
制造厂商希捷(Seagate)

希捷 logo
希捷公司成立于1979年,现为全球第二大的硬盘、磁盘和读写磁头制造商,希捷在设计、制造和销售硬盘领域居全球领先地位,提供用于企业、台式电脑、移动设备和消费电子的产品。2005年并购迈拓(Maxtor)2011年4月收购三星(Samsung)旗下的硬盘业务。

西部数据(Western Digital)

全球知名的硬盘厂商,现为全球第一大硬盘制造商,成立于1979年,目前总部位于美国加州,在世界各地设有分公司或办事处,为全球五大洲用户提供存储器产品,2011年3月收购日立之后,市场份额达到将近百分之50,取代希捷成为名副其实的硬盘老大。

日立(HITACHI)
HITACHI日立集团是全球最大的综合跨国集团之一.台式电脑硬盘,笔记本硬盘都有生产。于2002年并购IBM硬盘生产事业部门。于2011年3月被西部数据收购。
东芝(TOSHIBA)
日本最大的半导体制造商,亦是第二大综合电机制造商,隶属于三井集团旗下。主要生产移动存储产品。

三星(Samsung)
韩国最大的企业集团三星集团的简称。生产的硬盘提供用于台式电脑、移动设备和消费电子的产品。2011年4月19日,希捷正式宣布以13.75亿美元(现金加股票的方式)收购三星硬盘业务。2011年12月20日,希捷宣布已完成对三星电子有限公司旗下硬盘业务的收购交易。

编辑本段物理结构1.磁头
硬盘内部结构
磁头是硬盘中最昂贵的部件,也是硬盘技术中最重要和最关键的一环。传统的磁头是读写合一的电磁感应式磁头,但是,硬盘的读、写却是两种截然不同的操作,为此,这种二合一磁头在设计时必须要同时兼顾到读/写两种特性,从而造成了硬盘设计上的局限。而MR磁头(Magnetoresistive
heads),即磁阻磁头,采用的是分离式的磁头结构:写入磁头仍采用传统的磁感应磁头(MR磁头不能进行写操作),读取磁头则采用新型的MR磁头,即所谓的感应写、磁阻读。这样,在设计时就可以针对两者的不同特性分别进行优化,以得到最好的读/写性能。另外,MR磁头是通过阻值变化而不是电流变化去感应信号幅度,因而对信号变化相当敏感,读取数据的准确性也相应提高。而且由于读取的信号幅度与磁道宽度无关,故磁道可以做得很窄,从而提高了盘片密度,达到200MB/英寸2,而使用传统的磁头只能达到20MB/英寸2,这也是MR磁头被广泛应用的最主要原因。目前,MR磁头已得到广泛应用,而采用多层结构和磁阻效应更好的材料制作的GMR磁头(Giant
Magnetoresistive heads)也逐渐普及。
2.磁道当磁盘旋转时,磁头若保持在一个位置上,则每个磁头都会在磁盘表面划出一个圆形轨迹,这些圆形轨迹就叫做磁道。这些磁道用肉眼是根本看不到的,因为它们仅是盘面上以特殊方式磁化了的一些磁化区,磁盘上的信息便是沿着这样的轨道存放的。相邻磁道之间并不是紧挨着的,这是因为磁化单元相隔太近时磁性会相互产生影响,同时也为磁头的读写带来困难。一张1.44MB的3.5英寸软盘,一面有80个磁道,而硬盘上的磁道密度则远远大于此值,通常一面有成千上万个磁道。
3.扇区磁盘上的每个磁道被等分为若干个弧段,这些弧段便是磁盘的扇区,每个扇区可以存放512个字节的信息,磁盘驱动器在向磁盘读取和写入数据时,要以扇区为单位。1.44MB3.5英寸的软盘,每个磁道分为18个扇区。
4.柱面硬盘通常由重叠的一组盘片构成,每个盘面都被划分为数目相等的磁道,并从外缘的“0”开始编号,具有相同编号的磁道形成一个圆柱,称之为磁盘的柱面。磁盘的柱面数与一个盘单面上的磁道数是相等的。无论是双盘面还是单盘面,由于每个盘面都有自己的磁头,因此,盘面数等于总的磁头数。所谓硬盘的CHS,即Cylinder(柱面)、Head(磁头)、Sector(扇区),只要知道了硬盘的CHS的数目,即可确定硬盘的容量,硬盘的容量=柱面数*磁头数*扇区数*512B。

编辑本段逻辑结构3D参数很久以前,硬盘的容量还非常小的时候,人们采用与软盘类似的结构生产硬盘。也就是硬盘盘片的每一条磁道都具有相同的扇区数。由此产生了所谓的3D参数(Disk Geometry). 即磁头数(Heads),柱面数(Cylinders),扇区数(Sectors),以及相应的寻址方式。

其中:

磁头数(Heads)表示硬盘总共有几个磁头,也就是有几面盘片, 最大为255 (用8 个二进制位存储)

柱面数(Cylinders) 表示硬盘每一面盘片上有几条磁道,最大为1023(用 10 个二进制位存储)

扇区数(Sectors) 表示每一条磁道上有几个扇区,最大为63(用 6个二进制位存储)

每个扇区一般是512个字节, 理论上讲这不是必须的,但好像没有取别的值的。

所以磁盘最大容量为:

255 * 1023 * 63 * 512 / 1048576 = 7.837 GB (1M
=1048576 Bytes)

或硬盘厂商常用的单位:

255 * 1023 * 63 * 512 / 1000000 = 8.414 GB (1M
=1000000 Bytes)

在CHS 寻址方式中,磁头,柱面,扇区的取值范围分别为0到 Heads - 1。0 到Cylinders - 1。1 到Sectors
(注意是从1 开始)。
基本Int 13H 调用BIOS
Int 13H 调用是BIOS提供的磁盘基本输入输出中断调用,它可以完成磁盘(包括硬盘和软盘)的复位,读写,校验,定位,诊,格式化等功能。它使用的就是CHS 寻址方式,因此最大识能访问 8 GB 左右的硬盘(本文中如不作特殊说明,均以 1M = 1048576 字节为单位)。
现代硬盘结构在老式硬盘中,由于每个磁道的扇区数相等,所以外道的记录密度要远低于内道,因此会浪费很多磁盘空间
(与软盘一样)。为了解决这一问题,进一步提高硬盘容量,人们改用等密度结构生产硬盘。也就是说,外圈磁道的扇区比内圈磁道多,采用这种结构后,硬盘不再具有实际的3D参数,寻址方式也改为线性寻址,即以扇区为单位进行寻址。

为了与使用3D寻址的老软件兼容(如使用BIOSInt13H接口的软件), 在硬盘控制器内部安装了一个地址翻译器,由它负责将老式3D参数翻译成新的线性参数。这也是为什么现在硬盘的3D参数可以有多种选择的原因(不同的工作模式,对应不同的3D参数,如 LBA,LARGE,NORMAL)。
扩展Int 13H虽然现代硬盘都已经采用了线性寻址,但是由于基本Int13H 的制约,使用BIOS Int
13H 接口的程序,如 DOS 等还只能访问8
G以内的硬盘空间。为了打破这一限制,Microsoft 等几家公司制定了扩展Int 13H 标准(Extended Int13H),采用线性寻址方式存取硬盘,所以突破了 8 G的限制,而且还加入了对可拆卸介质(如活动硬盘) 的支持。

编辑本段基本参数一、容量作为计算机系统的数据存储器,容量是硬盘最主要的参数。

硬盘的容量以兆字节(MB/MiB)或千兆字节(GB/GiB)为单位,1GB=1000MB而1GiB=1024MiB。但硬盘厂商通常使用的是GB,也就是1G=1000MB,而Windows系统,就依旧以“GB”字样来表示“GiB”单位(1024换算的),因此我们在BIOS中或在格式化硬盘时看到的容量会比厂家的标称值要小。

硬盘的容量指标还包括硬盘的单碟容量。所谓单碟容量是指硬盘单片盘片的容量,单碟容量越大,单位成本越低,平均访问时间也越短。

一般情况下硬盘容量越大,单位字节的价格就越便宜,但是超出主流容量的硬盘略微例外。
二、转速转速(Rotational Speed 或Spindle speed),是硬盘内电机主轴的旋转速度,也就是硬盘盘片在一分钟内所能完成的最大转数。转速的快慢是标示硬盘档次的重要参数之一,它是决定硬盘内部传输率的关键因素之一,在很大程度上直接影响到硬盘的速度。硬盘的转速越快,硬盘寻找文件的速度也就越快,相对的硬盘的传输速度也就得到了提高。硬盘转速以每分钟多少转来表示,单位表示为RPM,RPM是Revolutions
Per minute的缩写,是转/每分钟。RPM值越大,内部传输率就越快,访问时间就越短,硬盘的整体性能也就越好。

硬盘的主轴马达带动盘片高速旋转,产生浮力使磁头飘浮在盘片上方。要将所要存取资料的扇区带到磁头下方,转速越快,则等待时间也就越短。因此转速在很大程度上决定了硬盘的速度。

家用的普通硬盘的转速一般有5400rpm、7200rpm几种,高转速硬盘也是现在台式机用户的首选;而对于笔记本用户则是4200rpm、5400rpm为主,虽然已经有公司发布了10000rpm的笔记本硬盘,但在市场中还较为少见;服务器用户对硬盘性能要求最高,服务器中使用的SCSI硬盘转速基本都采用10000rpm,甚至还有15000rpm的,性能要超出家用产品很多。较高的转速可缩短硬盘的平均寻道时间和实际读写时间,但随着硬盘转速的不断提高也带来了温度升高、电机主轴磨损加大、工作噪音增大等负面影响。
三、平均访问时间平均访问时间(Average Access Time)是指磁头从起始位置到达目标磁道位置,并且从目标磁道上找到要读写的数据扇区所需的时间。

平均访问时间体现了硬盘的读写速度,它包括了硬盘的寻道时间和等待时间,即:平均访问时间=平均寻道时间+平均等待时间。

硬盘的平均寻道时间(Average Seek Time)是指硬盘的磁头移动到盘面指定磁道所需的时间。这个时间当然越小越好,目前硬盘的平均寻道时间通常在8ms到12ms之间,而SCSI硬盘则应小于或等于8ms。

硬盘的等待时间,又叫潜伏期(Latency),是指磁头已处于要访问的磁道,等待所要访问的扇区旋转至磁头下方的时间。平均等待时间为盘片旋转一周所需的时间的一半,一般应在4ms以下。
四、传输速率传输速率(Data
Transfer Rate) 硬盘的数据传输率是指硬盘读写数据的速度,单位为兆字节每秒(MB/s)。硬盘数据传输率又包括了内部数据传输率和外部数据传输率。

内部传输率(Internal Transfer Rate) 也称为持续传输率(Sustained
Transfer Rate),它反映了硬盘缓冲区未用时的性能。内部传输率主要依赖于硬盘的旋转速度。

外部传输率(External Transfer Rate)也称为突发数据传输率(Burst Data Transfer
Rate)或接口传输率,它标称的是系统总线与硬盘缓冲区之间的数据传输率,外部数据传输率与硬盘接口类型和硬盘缓存的大小有关。

目前Fast ATA接口硬盘的最大外部传输率为16.6MB/s,而Ultra
ATA接口的硬盘则达到33.3MB/s。2012年12月,两80后研制出传输速度每秒1.5GB的固态硬盘。[1]
使用SATA(Serial ATA)口的硬盘又叫串口硬盘,是未来PC机硬盘的趋势。2001年,由Intel、APT、Dell、IBM、希捷、迈拓这几大厂商组成的Serial
ATA委员会正式确立了Serial ATA 1.0规范。2002年,虽然串行ATA的相关设备还未正式上市,但Serial ATA委员会已抢先确立了Serial
ATA 2.0规范。Serial ATA采用串行连接方式,串行ATA总线使用嵌入式时钟信号,具备了更强的纠错能力,与以往相比其最大的区别在于能对传输指令(不仅仅是数据)进行检查,如果发现错误会自动矫正,这在很大程度上提高了数据传输的可靠性。串行接口还具有结构简单、支持热插拔的优点。
五、缓存缓存(Cache memory)是硬盘控制器上的一块内存芯片,具有极快的存取速度,它是硬盘内部存储和外界接口之间的缓冲器。由于硬盘的内部数据传输速度和外界接口传输速度不同,缓存在其中起到一个缓冲的作用。缓存的大小与速度是直接关系到硬盘的传输速度的重要因素,能够大幅度地提高硬盘整体性能。当硬盘存取零碎数据时需要不断地在硬盘与内存之间交换数据,有大缓存,则可以将那些零碎数据暂存在缓存中,减小外系统的负荷,也提高了数据的传输速度

编辑本段数据保护1.S.M.A.R.T.技术

S.M.A.R.T.技术的全称是Self-Monitoring,Analysis and Reporting
Technology,即“自监测、分析及报告技术”。在ATA-3标准中,S.M.A.R.T.技术被正式确立。S.M.A.R.T.监测的对象包括磁头、磁盘、马达、电路等,由硬盘的监测电路和主机上的监测软件对被监测对象的运行情况与历史记录及预设的安全值进行分析、比较,当出现安全值范围以外的情况时,会自动向用户发出警告,而更先进的技术还可以提醒网络管理员的注意,自动降低硬盘的运行速度,把重要数据文件转存到其它安全扇区,甚至把文件备份到其它硬盘或存储设备。通过S.M.A.R.T.技术,确实可以对硬盘潜在故障进行有效预测,提高数据的安全性。但我们也应该看到,S.M.A.R.T.技术并不是万能的,它只能对渐发性的故障进行监测,而对于一些突发性的故障,如盘片突然断裂等,硬盘再怎么smart也无能为力了。因此不管怎样,备份仍然是必须的。

2.DFT技术

DFT(Drive Fitness Test,驱动器健康检测)技术是IBM公司为其PC硬盘开发的数据保护技术,它通过使用DFT程序访问IBM硬盘里的DFT微代码对硬盘进行检测,可以让用户方便快捷地检测硬盘的运转状况。

据研究表明,在用户送回返修的硬盘中,大部分的硬盘本身是好的。DFT能够减少这种情形的发生,为用户节省时间和精力,避免因误判造成数据丢失。它在硬盘上分割出一个单独的空间给DFT程序,即使在系统软件不能正常工作的情况下也能调用。

DFT微代码可以自动对错误事件进行登记,并将登记数据保存到硬盘上的保留区域中。DFT微代码还可以实时对硬盘进行物理分析,如通过读取伺服位置错误信号来计算出盘片交换、伺服稳定性、重复移动等参数,并给出图形供用户或技术人员参考。这是一个全新的观念,硬盘子系统的控制信号可以被用来分析硬盘本身的机械状况。

而DFT软件是一个独立的不依赖操作系统的软件,它可以在用户其他任何软件失效的情况下运行。

3.加密技术
现代社会人们对隐私的保护欲越来越强烈,硬盘加密技术开始发展。文字、图形、数字密码保护是最基本的形式,随着科技的进步,生物识别技术开始应用到硬盘技术当中。

编辑本段扩展分区由于主分区表中只能分四个分区,无法满足需求,因此设计了一种扩展分区格式。基本上说,扩展分区的信息是以链表形式存放的,但也有一些特别的地方。首先, 主分区表中要有一个基本扩展分区项,所有扩展分区都隶属于它,也就是说其他所有扩展分区的空间都必须包括在这个基本扩展分区中。对于DOS
/ Windows 来说,扩展分区的类型为0x05。除基本扩展分区以外的其他所有扩展分区则以链表的形式级联存放, 后一个扩展分区的数据项记录在前一个扩展分区的分区表中,但两个扩展分区的空间并不重叠。

扩展分区类似于一个完整的硬盘,必须进一步分区才能使用。但每个扩展分区中只能存在一个其他分区。此分区在
DOS/Windows环境中即为逻辑盘。因此每一个扩展分区的分区表(同样存储在扩展分区的第一个扇区中)中最多只能有两个分区数据项(包括下一个扩展分区的数据项)。

J. 硬盘的工作原理是什么

硬盘的物理结构包括磁头、磁道、扇区和柱面。其中,磁头是硬盘最关键的部分,是硬盘进行读写的“笔尖”,每一个盘面(若将磁头比喻作“笔”的话,那盘面即是“笔”下的“纸”)都有自己的一个磁头。磁道是指磁盘旋转时由于磁头始终保持在一个位置上而在磁盘表面划出的圆形轨迹,这些磁道是肉眼看不到的,它们只是磁盘面上的一些磁化区,使信息沿这种轨道存放。扇区是指磁道被等分为的若干弧段,是磁盘驱动器向磁盘读写数据的基本单位,其中每个扇区可以存放512字节的信息。而柱面,顾名思义,为一个圆柱形面,由于磁盘是由一组重叠的盘片组成的,每个盘面都被划分为等量的磁道并由外到里依此编号,具有相同编号的磁道形成的便是柱面,因此磁盘的柱面数与其一盘面的磁道数是相等的。

阅读全文

与电脑硬盘工作原理相关的资料

热点内容
win10电脑用户名怎么改名字 浏览:34
手机上的无线网怎么连接电脑上 浏览:146
电脑中有文件开头带波浪号 浏览:134
笔记本电脑带光驱 浏览:497
电脑键盘刷新功能是哪个 浏览:407
电脑显示不出来是什么坏了 浏览:579
电脑主板哪个牌子好又便宜 浏览:470
组装电脑启动后屏幕黑屏 浏览:207
电脑主机带WiFi 浏览:286
平板电脑可以用通用屏幕吗 浏览:707
电脑c盘k文件被重命名蓝屏 浏览:573
电脑如何画画 浏览:881
国产电脑软件可以用360无线吗 浏览:950
电脑突然黑屏主机运行键盘不亮 浏览:767
苹果软件如何从资源库移动出来 浏览:178
如何重新使用电脑触摸板 浏览:614
电脑显示屏怎么设置适应分辨率 浏览:32
dvd在电脑上为什么播放不出来 浏览:269
苹果手机照片误删怎么恢复软件 浏览:797
如何看自己电脑的网卡 浏览:251