導航:首頁 > 電腦文件 > 電腦硬碟工作原理

電腦硬碟工作原理

發布時間:2022-05-20 06:14:06

A. 固態硬碟的工作原理是什麼

固態硬碟原理是一種主要以快閃記憶體作為永久性存儲器的計算機存儲設備,此處固態主要相對於以機械臂帶動磁頭轉動實現讀寫操作的磁碟而言,NAND或者其他固態存儲以電位高低或者相位狀態的不同記錄0和1。

固態硬碟將數據保存在快閃記憶體中,而不是像硬碟驅動器之類的磁性系統。固態硬碟之所以如此命名,是因為它們不依賴於移動部件或旋轉磁碟。相反,數據被保存到一組存儲庫中,就像可以隨身攜帶的快閃記憶體一樣。

固態硬碟的存儲介質分為兩種,一種是採用快閃記憶體作為存儲介質,另外一種是採用DRAM作為存儲介質。

1、基於快閃記憶體的固態硬碟:採用FLASH晶元作為存儲介質,這也是通常所說的SSD。它的外觀可以被製作成多種模樣,例如:筆記本硬碟、微硬碟、存儲卡、U盤等樣式。

這種SSD固態硬碟最大的優點就是可以移動,而且數據保護不受電源控制,能適應於各種環境,適合於個人用戶使用。

一般它擦寫次數普遍為3000次左右,以常用的64G為例,在SSD的平衡寫入機理下,可擦寫的總數據量為64G X 3000 = 192000G,它像普通硬碟HDD一樣,理論上可以無限讀寫。

2、基於DRAM的固態硬碟:採用DRAM作為存儲介質,應用范圍較窄。它仿效傳統硬碟的設計,可被絕大部分操作系統的文件系統工具進行卷設置和管理,並提供工業標準的PCI和FC介面用於連接主機或者伺服器。

應用方式可分為SSD硬碟和SSD硬碟陣列兩種,是一種高性能的存儲器,而且使用壽命很長,美中不足的是需要獨立電源來保護數據安全。DRAM固態硬碟屬於比較非主流的設備。

(1)電腦硬碟工作原理擴展閱讀:

固態硬碟特點:

1、固態硬碟和機械硬碟相比讀寫速度遠遠勝出,這也是其最主要的功能,還具有低功耗、無噪音、抗震動、低熱量的特點,這些特點可以延長靠電池供電的計算機設備運轉時間。

2、固態硬碟防震抗摔性傳統硬碟都是磁碟型的,數據儲存在磁碟扇區里。而固態硬碟是使用快閃記憶體顆粒(即mp3、U盤等存儲介質)製作而成,所以SSD固態硬碟內部不存在任何機械部件。

B. 電腦硬碟的工作原理是什麼

現在的硬碟,無論是IDE還是SCSI,採用的都是"溫徹思特「技術,都有以下特點:

1.磁頭,碟片及運動機構密封。

2.固定並高速旋轉的鍍磁碟片表面平整光滑。

3.磁頭沿碟片徑向移動。

4.磁頭對碟片接觸式啟停,但工作時呈飛行狀態不與碟片直接接觸。

C. 硬碟的工作原理是什麼啊

硬碟工作的時候是告訴旋轉的,所以硬碟在工作的時候是不能去動 的,很容易造成硬碟損傷!
硬碟的盤面劃分成一個一個的同心圓,稱為磁軌,多個碟片的相同位置的磁軌形成了一個同心圓柱,這就是硬碟的柱面,在每個磁軌上又劃分出相同存儲容量的扇區作為存儲數據的最小單位。要讓硬碟正常工作,硬碟必須有相應的初始化和管理程序,其中有部分寫在碟片的特定區域,這就是我們常說的固件區,對於不同的硬碟,這個區域的物理位置是不同的,所記錄的程序的數量和功能也有差別

D. 硬碟的工作原理

為什麼頻繁讀寫會損壞硬碟呢?
磁頭壽命是有限的,頻繁的讀寫會加快磁頭臂及磁頭電機的磨損,頻繁的讀寫磁碟某個區域更會使該區溫度升高,將影響該區磁介質的穩定性還會導至讀寫錯誤,高溫還會使該區因熱膨漲而使磁頭和碟面更近了(正常情況下磁頭和碟面只有幾個微米,更近還得了?),而且也會影響薄膜式磁頭的數據讀取靈敏度,會使晶體振盪器的時鍾主頻發生改變,還會造成硬碟電路元件失靈。
任務繁多也會導至ide硬碟過早損壞,由於ide硬碟自身的不足,,過多任務請求是會使尋道失敗率上升導至磁頭頻繁復位(復位就是磁頭回復到 0磁軌,以便重新尋道)加速磁頭臂及磁頭電機磨損。

我先說一下現代硬碟的工作原理

現在的硬碟,無論是ide還是scsi,採用的都是"溫徹思特「技術,都有以下特點:1。磁頭,碟片及運動機構密封。2。固定並高速旋轉的鍍磁碟片表面平整光滑。3。磁頭沿碟片徑向移動。4。磁頭對碟片接觸式啟停,但工作時呈飛行狀態不與碟片直接接觸。
碟片:硬碟碟片是將磁粉附著在鋁合金(新材料也有用玻璃)圓碟片的表面上.這些磁粉被劃分成稱為磁軌的若干個同心圓,在每個同心圓的磁軌上就好像有無數的任意排列的小磁鐵,它們分別代表著0和1的狀態。當這些小磁鐵受到來自磁頭的磁力影響時,其排列的方向會隨之改變。利用磁頭的磁力控制指定的一些小磁鐵方向,使每個小磁鐵都可以用來儲存信息。

盤體:硬碟的盤體由多個碟片組成,這些碟片重疊在一起放在一個密封的盒中,它們在主軸電機的帶動下以很高的速度旋轉,其每分鍾轉速達3600,4500,5400,7200甚至以上。

磁頭:硬碟的磁頭用來讀取或者修改碟片上磁性物質的狀態,一般說來,每一個磁面都會有一個磁頭,從最上面開始,從0開始編號。磁頭在停止工作時,與磁碟是接觸的,但是在工作時呈飛行狀態。磁頭採取在碟片的著陸區接觸式啟停的方式,著陸區不存放任何數據,磁頭在此區域啟停,不存在損傷任何數據的問題。讀取數據時,碟片高速旋轉,由於對磁頭運動採取了精巧的空氣動力學設計,此時磁頭處於離盤面數據區0.2---0.5微米高度的」飛行狀態「。既不與盤面接觸造成磨損,又能可靠的讀取數據。

電機:硬碟內的電機都為無刷電機,在高速軸承支撐下機械磨損很小,可以長時間連續工作。高速旋轉的盤體產生了明顯的陀螺效應,所以工作中的硬碟不宜運動,否則將加重軸承的工作負荷。硬碟磁頭的尋道飼服電機多採用音圈式旋轉或者直線運動步進電機,在飼服跟蹤的調節下精確地跟蹤碟片的磁軌,所以在硬碟工作時不要有沖擊碰撞,搬動時要小心輕放。

原理說到這里,大家都明白了吧?

首先,磁頭和數據區是不會有接觸的,所以不存在磨損的問題。

其次,一開機硬碟就處於旋轉狀態,主軸電機的旋轉可以達到4500或者7200轉每分鍾,這和你是否使用BT或者ed都沒有關系,只要一通電,它們就在轉.它們的磨損也和軟體無關。

再次,尋道電機控制下的磁頭的運動,是左右來回移動的,而且幅度很小,從碟片的最內層(著陸區)啟動,慢慢移動到最外層,再慢慢移動回來,一個磁軌再到另一個磁軌來尋找數據。不會有什麼大規模跳躍的(又不是青蛙)。所以它的磨損也是可以忽略不記的。

那麼,熱量是怎麼來的呢?
首先是主軸電機和尋道飼服電機的旋轉,硬碟的溫度主要是因為這個。
其次,高速旋轉的盤體和空氣之間的摩擦。這個也是主要因素。
而硬碟的讀寫???
很遺憾,它的發熱量可以忽略不記!!!!!!!!!!
硬碟的讀操作,是碟片上磁場的變化影響到磁頭的電阻值,這個過程中碟片不會發熱,磁頭倒是因為電流發生變化,所以會有一點熱量產生。寫操作呢?正好反過來,通過磁頭的電流強度不斷發生變化,影響到碟片上的磁場,這一過程因為用到電磁感應,所以磁頭發熱量較大。但是碟片本身是不會發熱的,因為碟片上的永磁體是冷性的,不會因為磁場變化而發熱。
但是總的來說,磁頭的發熱量和前面兩個比起來,是小巫見大巫了。
熱量是可以輻射傳導的,那麼高熱量對碟片上的永磁體會不會有傷害呢?其實傷害是很小的,永磁體消磁的溫度,遠遠高於硬碟正常情況下產生的溫度。當然,要是你的機箱散熱不好,那可就怪不了別人了。

我這里不得不說一下某人的幾個錯誤:

一。高溫是影響到磁頭的電阻感應靈敏度,所以才會產生讀寫錯誤,和永磁體沒有關系。

二。所謂的熱膨脹,不會拉近盤體和磁頭的距離,因為磁頭的飛行是空氣動力學原理,在正常情況下始終和碟片保持一定距離。當然要是你大力打擊硬碟,那麼這個震動。。。。。

三。所謂尋道是指硬碟從初使位置移動到指定磁軌。所謂的復位動作,並不是經常發生的。因為磁軌的物理位置是存放在cmos裡面,硬碟並不需要移動回0磁軌再重新出發。只要磁頭一啟動,所謂的復位動作就完成了,除非你重新啟動電腦,不然復位動作就不會再發生。

四。ide硬碟和scsi硬碟的盤體結構是差不多的。只是scsi硬碟的介面帶寬比同時代的ide硬碟要大,而且往往scsi卡往往都會有一個類似cpu的東西來減緩主cpu的佔用率。僅此而已,所以希捷才會把它的scsi硬碟的技術用在ide硬碟上。

五。硬碟的讀寫是以柱面的扇區為單位的。柱面也就是整個盤體中所有磁面的半徑相同的同心磁軌,而把每個磁軌劃分為若干個區就是所謂的扇區了。硬碟的寫操作,是先寫滿一個扇區,再寫同一柱面的下一個扇區的,在一個柱面完全寫滿前,磁頭是不會移動到別的磁軌上的。所以文件在硬碟上的存儲,並不是像一般人的認為,是連續存放在一起的(從使用者來看是一起,但是從操作系統底層來看,其存放不是連續的)。所以BT或者ed磁頭的尋道一般都不會比你一邊玩游戲一邊聽歌大。當然,這種情況只是單純的下載或者上傳而已,但是其實在這個過程中,誰能保證自己不會啟動其它需要讀寫硬碟的軟體?可能很多人都喜歡一邊下載一邊玩游戲或者聽歌吧?更不用說windows本身就需要頻繁讀寫虛擬內存文件了。所以,用BT下載也好,ed也好,對硬碟的折磨和平時相比不會太厲害的。

六。這里順便說說flashget這個下載軟體。為什麼開太多線程會不好?首先,線程一多,cpu的佔用率就高,換頁動作也就頻繁,從而虛擬內存讀寫頻繁,至於為什麼,只要學過系統原理的應該都知道,我這里就不說了。同理,BT和ED呢?同時從幾個人那裡下載一個文件,還有幾個人同時在下載你的文件,這和fg開多線程是類似的。所以硬碟燈猛閃。但是,現在的硬碟是有緩存的,數據不是馬上就寫到硬碟上,而是先存放在緩存裡面,,然後到一定量了再一次性寫入硬碟。在fg裡面再怎麼設置都好,其實是先寫到緩存裡面的。但是這個過程也是需要cpu干預的,所以設置時間太短,cpu佔用率也高,所以硬碟燈也還是猛閃的,因為虛擬文件在讀寫。

七。硬碟讀寫頻繁,磁頭臂在尋道伺服電機的驅動下移動頻繁,但是對機械來說這點耗損雖有,其實不大。除非你的硬碟本身就有機械故障比如力臂變形之類的(水貨最常見的故障)。真正耗損在於磁頭,不斷變化的電流會造成它的老化,但是和它的壽命相比。。。。。應該也是在合理范圍內的。除非因為震動,磁頭撞擊到了盤體。

八。受高溫影響的最嚴重的是機械的電路,特別是硬碟外面的那塊電路板,上面的集成塊在高溫下會加速老化的。所以ibm的某款玻璃硬碟,雖然有壞道,但是一用某個軟體,馬上就不見了。再嚴重點的,換塊線路板,也就正常了。就是這個原因.

打了這么多字,實在是太累了。
總之,硬碟會因為環境不好和保養不當而影響壽命,但是這絕對不是軟體的錯。
flashget也好,BT也好,ED也好,它們雖然對硬碟的讀寫頻繁,但是還不至於比你一般玩游戲一般聽歌對硬碟傷害大.說得更加明白的話,它們對硬碟的所謂耗損,其實可以忽略不記.不要因為看見硬碟燈猛閃,就在那裡瞎擔心.不然那些提供web服務和ftp服務的伺服器,它們的硬碟讀寫之大,可絕非平常玩游戲,下軟體的硬碟可比的。
硬碟有一個參數叫做連續無故障時間。它是指硬碟從開始運行到出現故障的最長時間,單位是小時,英文簡寫是mtbf。一般硬碟的mtbf至少在30000或40000小時。具體情況可以看硬碟廠商的參數說明。這個連續無故障時間,大家可以自己除一下,看看是多少年。然後大家自己想想,自己的硬碟平時連續工作最久是多長時間。
目前我使用的機器,已經連續開機1年了,除了中途有幾次關機十幾分鍾來清理灰塵外,從來沒有停過。另外還有三台使用scsi硬碟的伺服器,是連續兩年沒有停過了,硬碟的發熱量絕非平常ide硬碟可比(1萬轉的硬碟啊)。

最後補充一下若干點:

一。硬碟最好不要買水貨或者返修貨。水貨在運輸過程中是非常不安全的,雖然從表面上看來似乎無損傷,但是有可能在運輸過程中因為各種因素而對機械體造成損傷。返修貨就更加不用說了。老實說,那些埋怨硬碟容易損壞的人,你們應該自己先看看,自己的硬碟是否就是這些貨色。
二。硬碟的工作環境是需要整潔的,特別是注意不要在頻繁斷電和灰塵很多的環境下使用硬碟。機箱要每隔一兩個月清理一下灰塵。
三。硬碟的機械最怕震動和高溫。所以環境要好,特別是機箱要牢固,以免共震太大。電腦桌也不要搖搖晃晃的。
四。要經常整理硬碟碎片。這里有一個大多數人的誤解,一般人都以為硬碟碎片會加大硬碟耗損,其實不是這樣的。硬碟碎片的增多本身只是會讓硬碟讀寫所花時間比碎片少的時候多而已,對硬碟的耗損是可以忽略的(我在這里只說一個事實,目前網路上的伺服器,它們用得最多的操作系統是unix,但是在unix下面是沒有磁碟碎片整理軟體的。就連微軟的nt4,本身也是沒有的)。不過,因為磁頭頻繁的移動,造成讀寫時間的加大,所以cpu的換頁動作也就頻繁了,而造成虛擬文件(在這里其實准確的說法是換頁文件)讀寫頻繁,從而加重硬碟磁頭尋道的負荷。這才是硬碟碎片的壞處。
五。在硬碟讀寫時盡量避免忽然斷電,冷啟動和做其他加重cpu負荷的事情(比如在玩游戲時聽歌,或者在下載時玩大型3d游戲),這些對硬碟的傷害比一般人想像中還要大。原因我就不說了,打字太累。

E. 機械硬碟的工作原理是什麼

這個問題太廣泛~估計一本書都寫不完~
磁頭根據電磁感應介質上電阻值隨磁場變化~把電流變化的磁信息轉化為電信號傳輸到外部的過程。

F. 電腦硬碟的內部構造及原理是不是和光碟機一樣啊

不一樣。
一、硬碟的內部構造分為:磁頭、磁軌、扇區、和柱面。
磁頭:磁頭是硬碟中最昂貴的部件,也是硬碟技術中最重要和最關鍵的一環。傳統的磁頭是讀寫合一的電磁感應式磁頭,但是,硬碟的讀、寫卻是兩種截然不同的操作,為此,這種二合一磁頭在設計時必須要同時兼顧到讀/寫兩種特性,從而造成了硬碟設計上的局限。而MR磁頭(Magnetoresistive heads),即磁阻磁頭,採用的是分離式的磁頭結構:寫入磁頭仍採用傳統的磁感應磁頭(MR磁頭不能進行寫操作),讀取磁頭則採用新型的MR磁頭,即所謂的感應寫、磁阻讀。這樣,在設計時就可以針對兩者的不同特性分別進行優化,以得到最好的讀/寫性能。另外,MR磁頭是通過阻值變化而不是電流變化去感應信號幅度,因而對信號變化相當敏感,讀取數據的准確性也相應提高。而且由於讀取的信號幅度與磁軌寬度無關,故磁軌可以做得很窄,從而提高了碟片密度,達到每平方英寸200MB,而使用傳統的磁頭只能達到每平方英寸20MB,這也是MR磁頭被廣泛應用的最主要原因。MR磁頭已得到廣泛應用,而採用多層結構和磁阻效應更好的材料製作的GMR磁頭(Giant Magnetoresistive heads)也逐漸開始普及。
磁軌:當磁碟旋轉時,磁頭若保持在一個位置上,則每個磁頭都會在磁碟表面劃出一個圓形軌跡,這些圓形軌跡就叫做磁軌。這些磁軌用肉眼是根本看不到的,因為它們僅是盤面上以特殊方式磁化了的一些磁化區,磁碟上的信息便是沿著這樣的軌道存放的。相鄰磁軌之間並不是緊挨著的,這是因為磁化單元相隔太近時磁性會相互產生影響,同時也為磁頭的讀寫帶來困難。一張1.44MB的3.5英寸軟盤,一面有80個磁軌,而硬碟上的磁軌密度則遠遠大於此值,通常一面有成千上萬個磁軌。磁軌的磁化方式一般由磁頭迅速切換正負極改變磁軌所代表的0和1。
扇區:磁碟上的每個磁軌被等分為若干個弧段,這些弧段便是磁碟的扇區,每個扇區可以存放512個位元組的信息,磁碟驅動器在向磁碟讀取和寫入數據時,要以扇區為單位。1.44MB3.5英寸的軟盤,每個磁軌分為18個扇區。
柱面:硬碟通常由重疊的一組碟片構成,每個盤面都被劃分為數目相等的磁軌,並從外緣的「0」開始編號,具有相同編號的磁軌形成一個圓柱,稱之為磁碟的柱面。磁碟的柱面數與一個盤單面上的磁軌數是相等的。無論是雙盤面還是單盤面,由於每個盤面都只有自己獨一無二的磁頭,因此,盤面數等於總的磁頭數。所謂硬碟的CHS,即Cylinder(柱面)、Head(磁頭)、Sector(扇區),只要知道了硬碟的CHS的數目,即可確定硬碟的容量,硬碟的容量=柱面數*磁頭數*扇區數*512B。
二、光碟機的內部構造:
(1)激光頭組件:包括光電管、聚焦透鏡等組成部分,配合運行齒輪機構和導軌等機械組成部分,在通電狀態下根據系統信號確定、讀取光碟數據並通過數據帶將數據傳輸到系統。
(2)主軸電機:光碟運行的驅動力,在光碟讀取過程的告訴運行中由提供快速的數據定位功能。
(3)光碟托架:在開啟和關閉狀態下的光碟承載體。
(4)啟動機構:控制光碟托架的進出和主軸馬達的啟動,通電運行時,啟動機構將使包括主軸馬達和激光的頭組件的伺服機構都處於半載入狀態中 。

G. 硬碟的工作原理

硬碟的主要構件包括馬達、碟片、磁頭和控制系統等等。其中,碟片和磁頭是硬碟最為核心的部件,它們負擔著數據的存儲以及讀取和寫入的重任。
我們俗稱的「玻璃碟片」或者「鋁碟片」僅僅指的是碟片基體材料,碟片的結構其實並不簡單。為了能夠記錄大量的信息,並且快速准確地被磁頭讀取和寫入,需要先進的磁記錄物質和輔助塗層。一張硬碟碟片的單面由多個不同的層復合而成,最上層是有機氟高分子材料組成的潤滑層,保證磁頭更加平穩地運行;接下來是由堅硬的碳材料構成的保護層,保護數據層不受物理損壞。再下面的磁記錄層呈三明治結構,在兩層鈷-鉑-鉻-硼磁記錄介質層(反鐵磁性耦合介質,AFC)中間夾有厚度僅有0.6nm的金屬釕層(仙女之塵技術)。磁記錄層之下還有鉻底層,然後才是碟片基體材料。
硬碟存儲密度的飛速發展離不開磁頭技術的配合。磁頭技術也經歷了多次革命,為了滿足越來越高的存儲需要,磁疇的尺寸越來越小,因此磁頭的尺寸也變得越來越小,但同時效率卻越來越高。從老式的錳鐵磁體磁頭到磁阻磁頭,目前大量使用的巨磁阻磁頭也已歷經數代,未來還將出現隧道磁阻磁頭和電流垂直平面磁頭等更加先進的磁頭。

H. 電腦硬碟的工作原理

1.硬碟的磁頭

一塊硬碟存取數據的工作完全都是依靠磁頭來進行,換句話說,沒有磁頭,也就沒有實際意義上的硬碟。那麼,究竟什麼是磁頭呢?磁頭就是硬碟進行讀寫的「筆尖」,通過全封閉式的磁阻感應讀寫,將信息記錄在硬碟內部特殊的介質上。硬碟磁頭的發展先後經歷了亞鐵鹽類磁頭(MonolithicHead)、MIG(MetalInGap)磁頭和薄膜磁頭(ThinFilmHead)、MR磁頭等幾個階段。前3種傳統的磁頭技術都是採取了讀寫合一的電磁感應式磁頭,在設計方面因為同時需要兼顧讀/寫兩種特性,因此也造成了硬碟在設計方面的局限性。

第4種磁阻磁頭在設計方面引入了全新的分離式磁頭結構,寫入磁頭仍沿用傳統的磁感應磁頭,而讀取磁頭則應用了新型的MR磁頭,即所謂的感應寫、磁阻讀,針對讀寫的不同特性分別進行優化,以達到最好的讀寫性能。

除上述幾種磁頭技術外,技術更為創新、採用多層結構、磁阻效應更好的材料製作的GMR磁頭(GiantMagnetoResistiveheads,巨磁阻磁頭),可以使目前硬碟的容量在此基礎上再提高10倍以上。

2.硬碟的盤面

如果把硬碟磁頭比喻作「筆」的形容成立,那麼所謂硬碟的盤面自然就是這「筆」下的「紙」。如果您曾經有幸打開過自己的硬碟,可以發現硬碟內部是由金屬磁碟組成的,有單碟片的,有雙碟片的,也有多碟片的。它們通過表面的磁物質結合在一起。與平時使用的那些普通軟磁碟存儲介質的不連續顆粒相比,這種特殊物質的金屬磁碟具有更高的記錄密度和更強的安全性能。

目前市場上主流硬碟的碟片大都是採用了金屬薄膜磁碟構成,這種金屬薄膜磁碟較之普通的金屬磁碟具有更高的剩磁(Remanence:經消磁後,殘留在磁介質上的磁感應)和高矯頑力(CoerciveForce:作用於磁化材料以去除剩磁的反向磁通強度),因此也被硬碟廠商普遍採用。

與金屬薄膜磁碟相比,用玻璃做為新的碟片,有利於把硬碟碟片做得更平滑,單位磁碟密度也會更高。同時由於玻璃的堅固特性,新一代的玻璃硬磁碟在性能方面也會更加穩定。不過也有一點問題,如果一旦把玻璃材質作為硬碟基片,玻璃材質較之金屬材質的脆弱性就會表現出來。

3.硬碟的馬達

有了「筆」和「紙」,要讓「筆」能夠在「紙」上順利地寫字,當然還要有「手」的控制,而這雙控制磁頭在磁片上高速工作的「手」就應該是硬碟主軸上的馬達了。硬碟正因為有了馬達,才可以帶動磁碟片在真空封閉的環境中高速旋轉,馬達高速運轉時所產生的浮力使磁頭飄浮在碟片上方進行工作。硬碟在工作時,通過馬達的連動將需要存取資料的扇區帶到磁頭下方,馬達的轉速越快,等待存取記錄的時間也就越短。從這個意義上講,硬碟馬達的轉速在很大程度上決定了硬碟最終的速度。

在當今硬碟不斷向著超大容量邁進的同時,硬碟的速度也在不斷提高,這當然就要求硬碟的馬達也必須能夠跟上技術時代飛速發展的步伐。進入2000年後,5400rpm的硬碟即將成為歷史,7200rpm勢必成為2000年乃至今後一段時間的主流產品。速度方面的提升對於硬碟的馬達而言,自然也是提出了更高的要求。7200rpm、10000rpm甚至15000rpm的硬碟馬達自然不會再是傳統意義上的普通滾珠軸承馬達,因為硬碟轉速的不斷提高會帶來諸如磨損加劇、溫度升高、雜訊增大等一系列負面問題。傳統的普通滾珠軸承馬達自然無法妥善解決這些問題,於是曾廣泛應用在精密機械工業上的液態軸承馬達(Fluiddynamicbearingmotors)被引入到硬碟技術中。與傳統的滾珠軸承馬達不同,液態軸承馬達使用的是黏膜液油軸承,這種特殊的軸承以油膜代替了原先的滾珠,一方面避免了與金屬面的直接磨擦,將傳統馬達所帶來的雜訊及高溫降至最低;另一方面,油膜可以有效地吸收外來的震動,使硬碟的抗震能力由以往的150G提高至1200G;再一個方面,從理論上講,液態軸承馬達無磨損,使用壽命可以達到無限長,雖然我們無法通過這一點就奢想自己的新硬碟能夠「長生不老」,但最起碼可以延長使用壽命。

4.硬碟的轉速

硬碟的轉速(RotateSpeed),正像我們上文所述,硬碟的馬達直接決定了硬碟的轉速。理論上講,硬碟的轉速越快越好,因為較高的硬碟轉速可以極大地縮短硬碟的平均尋道時間和實際讀寫時間。但是,硬碟的高轉速帶給硬碟的負面影響就是轉速越快,硬碟表面的發熱量越大,如果再加上機箱散熱不佳和其他周邊散熱過多的原因,很可能造成機器運行不穩定。也正是這個原因,目前市場上絕大多數筆記本電腦中的專用硬碟,其轉速一般都不會超過4500rpm。

5.硬碟的平均尋道時間、平均訪問時間和平均潛伏時間

所謂硬碟的平均尋道時間(AverageSeekTime),其實就是指硬碟在盤面上移動讀寫頭至指定磁軌尋找相應目標數據所用的時間。我們在描述硬碟讀取數據能力時,目前主要以毫秒為計算單位,而硬碟讀取數據一次大多在6~14ms之間。當硬碟的單碟容量增大時,磁頭的尋道動作和移動距離會相應減少,這樣也就導致硬碟本身的平均尋道時間減少,從而提高了硬碟傳輸數據的速度。

而平均訪問時間(AverageAccessTime),指的就是平均尋道時間與平均潛伏時間的總和。平均訪問時間基本上也就能夠代表硬碟找到某一數據所用的時間。平均訪問時間越短越好,一般情況下應該控制在11~18ms之間,建議用戶選擇那些平均訪問時間在15ms以下的硬碟。

所謂平均潛伏時間(AverageLatencyTime),其准確的概念定位就是指相應磁軌旋轉到磁頭下方的時間,一般情況下在2~6ms之間。

6.硬碟的外部傳輸率和內部傳輸率

所謂硬碟的外部數據傳輸率(ExternalTransferRate)就是指電腦通過介面將數據交給硬碟的傳輸速度,而內部數據傳輸率(InternalTransferRate)就是指硬碟將這些數據記錄在自身碟片上的速度,也稱最大或最小持續傳輸率(SustainedTransferRate)。從實際應用方面分析,硬碟的外部數據傳輸率比其內部傳輸率速度要快很多,在它們之間有一塊緩沖區可以緩解二者的速度差距。而從硬碟緩沖區讀取數據的速度又稱之為突發數據傳輸率(BurstdataTransferRate)。

普通的EIDE硬碟理論上的傳輸速率,都已達到了17.5MB/s左右,而採用UltraDMA/33、UltraDMA/66技術後,傳輸率瞬間速度便可以達到33.3MB/s和66MB/s,至於UltraDMA/100和UltraDMA/160,也是指在這個速度上的提升。

7.硬碟的緩沖區

所謂硬碟的緩沖區(硬體緩沖)就是指硬碟本身的高速緩存(Cache),它能夠大幅度地提高硬碟整體性能。高速緩存其實就是指硬碟控制器上的一塊存取速度極快的DRAM內存,分為寫通式和回寫式。所謂寫通式,就是指在讀硬碟時系統先檢查請求,尋找所要求的數據是否在高速緩存中。如果在則稱為被命中,緩存就會發送出相應的數據,磁頭也就不必再向磁碟訪問數據,從而大幅度改善硬碟的性能。

所謂回寫式,指的是在內存中保留寫數據,當硬碟空閑時再次寫入。從這一點上而言,回寫式具有高於寫通式的系統性能。較早期的硬碟大多帶有128KB、256KB、512KB等高速緩存,目前的高檔硬碟高速緩存大多已經達到1MB、2MB甚至更高,在高速緩存的取材上也採用了速度比DRAM更快的同步內存SDRAM,確保硬碟性能更為卓越。

硬碟技術

硬碟所採用的技術,目前主要包括3個方面,一是磁頭技術,二是防震技術,三是數據保護技術。隨著各大製造廠商的技術競爭,目前這3個方面的技術要點也逐漸走向融合。

1.磁頭技術

(1)磁阻磁頭技術(Magneto-ResistiveHead)

磁阻磁頭技術是一種比較傳統的硬碟磁頭技術,是完全基於磁電阻效應工作的,其核心就是一片金屬材料,其電阻隨磁場的變化而變化。應用這種磁阻磁頭技術的原理就是:通過磁阻元件連著的一個十分敏感的放大器可以測出微小的電阻變化。所以越先進的MR技術可以提高記錄密度來記錄數據,增加單碟片容量即硬碟的最高容量,進而提高數據傳輸率。

(2)巨型磁阻磁頭(GMR)

這是MR磁阻磁頭技術的換代技術,目前絕大多數的硬碟產品都應用了這種技術。採用了巨型磁阻磁頭技術的硬碟,其讀、寫工作是分別由不同的磁頭來完成的,這種變化從而可以有效地提高硬碟的工作效率,並使增大磁軌密度成為可能。

(3)OAW(光學輔助溫式技術)

OAW是美國希捷公司新研製技術代號,很可能是未來磁頭技術的發展方向。應用這種OAW技術,未來的硬碟可以在1英寸面積內寫入105000以上的磁軌,單碟容量更是有望突破36GB。

2.防震技術

(1)SPS防震保護系統

這是昆騰公司在其火球7代(EX)系列之後普遍採用的硬碟防震動保護系統。其設計思路就是分散外來沖擊能量,盡量避免硬碟磁頭和碟片之間的意外撞擊,使硬碟能夠承受1000G以上的意外沖擊力。

(2)ShockBlock防震保護系統

雖然這是Maxtor公司的專利技術,但其設計思路與防護風格與昆騰公司的SPS技術有著異曲同工之妙,也是為了分散外來的沖擊能量,盡量避免磁頭和碟片相互撞擊,但它能承受的最大沖擊力卻可以達到1500G甚至更高。

3.數據保護技術

(1)S.M.A.R.T技術

S.M.A.R.T技術是目前絕大多數硬碟已經普遍採用的通用安全技術,而應用S.M.A.R.T技術,用戶們能夠預先測量出某些硬碟的特性。舉個例子,如監測硬碟磁頭的飛行高度。因為一旦磁頭開始出現飛得太高或太低的情況,硬碟在運行中就極有可能報錯,S.M.A.R.T技術就是一種對硬碟故障預先發出報警的廉價數據保護。

當然,利用S.M.A.R.T技術可預測的硬碟故障一般是硬碟性能惡化的結果,其中約60%為機械性質的,40%左右則是對軟性故障的有效預測。應用S.M.A.R.T技術可以有效地防止並減少硬碟數據丟失,而預先報警系統更能夠讓電腦用戶及時掌握自己硬碟的性能和實際使用狀況。

(2)數據衛士

西部數據(WD)公司的數據衛士能夠在硬碟工作的空餘時間里,每8個小時便自動執行硬碟掃描、檢測、修復碟片的各扇區等步驟。以上操作完全是自動運行,無需用戶干預與控制,特別是對初級用戶與不懂硬碟維護的用戶十分適用。

(3)DPS(數據保護系統)

昆騰公司在推出火球7代硬碟以後,從8代開始的所有硬碟中,都內建了所謂的DPS(數據保護系統)系統模式。DPS系統模式的工作原理是在其硬碟的前300MB內,存放操作系統等重要信息,DPS可在系統出現問題後的90s內自動檢測恢復系統數據,如果不行,則啟用隨硬碟附送的DPS軟盤,進入程序後DPS系統模式會自動分析造成故障的原因,盡量保證用戶硬碟上的數據不受損失。

(4)MaxSafe技術

MaxSafe技術是邁拓公司在其金鑽2代以後普遍採用的技術。MaxSafe技術的核心就是將附加的ECC校驗位保存在硬碟上,使硬碟在讀寫過程中,每一步都要經過嚴格的校驗,以此來保證硬碟數據的完整性。

4.其他綜合技術方面

(1)PRML(,硬碟最大相似性技術)讀取技術利用PRML讀取技術可以使單位硬碟碟片存儲更大量的信息。在增加硬碟容量的同時,還可以有效地提高硬碟數據的讀取和傳輸率。

(2)UltraDSP(超級數字信號處理器)技術及介面技術

應用UltraDSP進行數學運算,其速度較一般CPU快10~50倍。採用UltraDSP技術,單個的DSP晶元可以同時提供處理器及驅動介面的雙重功能,以減少其他電子元件的使用,可大幅度地提高硬碟的速度和可靠性。

介面技術可以極大地提高硬碟的最大外部傳輸率,最大的益處在於,可以把數據從硬碟直接傳輸到主內存而不佔用更多的CPU資源,提高系統性能。Maxtor公司2000年最新的鑽石9代和金鑽4代都採用了雙DSP晶元技術,將硬碟的系統性能提升到極致。

(3)3DDefenseSystem(3D保護系統)

3DDefenseSystem是美國希捷公司獨有的一種硬碟保護技術。3DDefenseSystem中主要包括了DriveDefense(磁碟保護)、DataDefense(數據保護)及DiagnosticDefense(診斷保護)等3個方面的內容。

DriveDefense(磁碟保護)。這裡面又包括:G-Force保護,可幫助希捷硬碟承受業界內最高的非工作狀態下的震動,即在2ms內震動力即使達到350G,也不會使硬碟損壞;SeaShield保護,提供ESD及安全處理,特別是對PCBA(PrintedCircuitBoardAssembly,印刷電路集成板);SeaShell保護,這是一種可以替換原有ESD(Elestro-StaticDischarge)的硬碟工具包,通過這一保護系統可為硬碟提供更多的保護。

DataDefense(數據保護)。這裡面又包括了希捷獨創的Multidrive系統(SAMS)。所謂SAMS就是通過減小硬碟的旋轉振動來最大程度地減少對硬碟的損壞;ECC(ErrorCorrectionCode,錯誤檢正代碼),即為高性能硬碟提供on-the-fly檢正,還有就是對數據恢復提供最大限度Firmware(固件)檢正,因此可以正確完整地進行讀、恢復數據;SafeSaring,當硬碟斷電及重新來電後,利用SafeSaring技術可以確保硬碟磁頭回到同樣的扇區,保證數據不丟失;End-to-EndPathProtection,確保數據在主機與磁碟之間傳輸的完整性。

DiagnosticDefense(診斷保護)。這裡面也包括了SeaTools——診斷工具軟體,可以幫助用戶診斷系統是否存在問題,以及診斷錯誤是否由其他硬體及軟體產生。另外,SeaTools還可以在ATA及SCSI產品中工作,可以應用於所有老舊的希捷硬碟;增強型的S.M.A.R.T功能,可以在硬碟發生錯誤與問題之前作為預測並向用戶發出警告;Web-BasedTools(基於Web的工具),允許用戶標識及解決一些非硬碟相關錯誤,如病毒等,也可以檢正文件系統,解決硬體沖突以避免不必要的硬碟返修;DLD(DriveLoggingDiagnostics)——捕獲不可恢復性數據錯誤,實質上就是交互性的診斷工作。

硬碟的工作模式

從主板的支持度來看,目前硬碟的工作模式主要有3種:NORMAL、LBA和LARGE模式。

NORMAL即我們平時講的普通模式,也是最早的IDE方式。在此方式下對硬碟訪問時,BIOS和IDE控制器對參數不作任何轉換。該模式支持的最大柱面數為1024,最大磁頭數為16,最大扇區數為63,每扇區位元組數為512KB。因此支持最大硬碟容量為:512KB×63×16×1024=528MB。在此模式下即使硬碟的實際物理容量很大,但可訪問的硬碟空間也只能是528MB。

LBA(LogicalBlockAddressing)即邏輯塊定址模式。應用這種模式所管理的硬碟空間突破了528MB的瓶頸,可達8.4GB。在LBA模式下,設置的柱面、磁頭、扇區等參數並不是實際硬碟的物理參數。在訪問硬碟時,由IDE控制器把由柱面、磁頭、扇區等參數確定的邏輯地址轉換為實際硬碟的物理地址。在LBA模式下,可設置的最大磁頭數為255,其餘參數與普通模式相同。

由此可計算出可訪問的硬碟容量為:512KB×63×255×1024=8.4GB。LARGE又稱為大硬碟管理模式。當硬碟的柱面超過1024而又不為LBA支持時可採用此種模式。LARGE模式採取的方法是把柱面數除以2,把磁頭數乘以2,其結果總容量不變。例如,在NORMAL模式下柱面數為1220,磁頭數為16,進入LARGE模式則柱面數為610,磁頭數為32。這樣在DOS中顯示的柱面數小於1024,即可正常工作。

I. 電腦硬碟什麼樣子的啊結構什麼樣啊工作原理是什麼樣的

硬碟(港台稱之為硬碟,英文名:Hard Disk Drive 簡稱HDD 全名 溫徹斯特式硬碟)是電腦主要的存儲媒介之一,由一個或者多個鋁制或者玻璃制的碟片組成。這些碟片外覆蓋有鐵磁性材料。絕大多數硬碟都是固定硬碟,被永久性地密封固定在硬碟驅動器中。 查看精彩圖冊
目錄硬碟硬碟種類硬碟技術機械硬碟介面ATAIDESATASATA ⅡSATA ⅢSCSI光纖通道SAS介面尺寸製造廠商物理結構1.磁頭2.磁軌3.扇區4.柱面邏輯結構3D參數基本Int 13H 調用現代硬碟結構擴展Int 13H基本參數一、容量二、轉速三、平均訪問時間四、傳輸速率五、緩存數據保護擴展分區相關名詞磁頭數薄膜感應(TFI)磁頭網路硬碟固態硬碟DNA硬碟故障表現維護保養1.讀寫過程中且忌斷電2.保持良好的工作環境3.防止受震動4.減少頻繁操作5.恰當的使用時間6.定期整理碎片7.使用穩定的電源供電8、不要強制性關機虛擬硬碟展開硬碟硬碟種類硬碟技術機械硬碟介面ATAIDESATASATA ⅡSATA ⅢSCSI光纖通道SAS介面尺寸製造廠商物理結構1.磁頭2.磁軌3.扇區4.柱面邏輯結構3D參數基本Int 13H 調用現代硬碟結構擴展Int 13H基本參數一、容量二、轉速三、平均訪問時間四、傳輸速率五、緩存數據保護擴展分區相關名詞磁頭數薄膜感應(TFI)磁頭網路硬碟固態硬碟DNA硬碟故障表現維護保養1.讀寫過程中且忌斷電2.保持良好的工作環境3.防止受震動4.減少頻繁操作5.恰當的使用時間6.定期整理碎片7.使用穩定的電源供電8、不要強制性關機虛擬硬碟展開
編輯本段硬碟硬碟種類硬碟分為固態硬碟(SSD)和機械硬碟(HDD);SSD採用快閃記憶體顆粒來存儲,HDD採用磁性碟片來存儲。硬碟技術磁頭復位節能技術:通過在閑時對磁頭的復位來節能。
西部數據在最新的硬碟上採用了該技術來減少空閑時功耗。
多磁頭技術:通過在同一碟片增加多個磁頭同時的讀或寫來為硬碟提速,或同時在多碟片同時利用磁頭來讀或寫來為磁碟提速。目前希捷和日立數據的部分型號採用了該技術。多用於伺服器和資料庫中心。
機械硬碟1.1956年,IBM的IBM 350 RAMAC是現代硬碟的雛形,它相當於兩個冰箱的體積,不過其儲存容量只有5MB。1973年IBM 3340問世,它擁有「溫徹斯特」這個綽號,來源於他兩個30MB的儲存單元,恰是當時出名的「溫徹斯特來福槍」的口徑和填彈量。至此,硬碟的基本架構被確立。
2.1980年,兩位前IBM員工創立的公司開發出5.25英寸規格的5MB硬碟,這是首款面向台式機的產品,而該公司正是希捷(SEAGATE)公司。
3.80年代末,IBM公司推出MR(Magneto Resistive磁阻)技術令磁頭靈敏度大大提升,使碟片的儲存密度較之前的20Mbpsi(bit/每平方英寸)提高了數十倍,該技術為硬碟容量的巨大提升奠定了基礎。1991年,IBM應用該技術推出了首款3.5英寸的1GB硬碟。
4.1970年到1991年,硬碟碟片的儲存密度以每年25%~30%的速度增長;從1991年開始增長到60%~80%;至今,速度提升到100%甚至是200%,從1997年開始的驚人速度提升得益於IBM的GMR(Giant
Magneto Resistive,巨磁阻)技術,它使磁頭靈敏度進一步提升,進而提高了儲存密度。
5.1995年,為了配合Intel的LX晶元組,昆騰(Quantum)與Intel攜手發布UDMA 33介面——EIDE標准將原來介面數據傳輸率從16.6MB/s提升到了33MB/s 同年,希捷開發出液態軸承(FDB,Fluid
Dynamic Bearing)馬達。所謂的FDB就是指將陀螺儀上的技術引進到硬碟生產中,用厚度相當於頭發直徑十分之一的油膜取代金屬軸承,減輕了硬碟噪音與發熱量。
6.1996年,希捷收購康諾(Conner Peripherals)。
7.1998年2月,UDMA66規格面世。
8.1999年,容量高達10GB的ATA硬碟面世。
9.2000年2月23日,希捷發布了轉速高達15,000RPM的Cheetah X15系列硬碟。
3月16日,硬碟領域又有新突破,第一款"玻璃硬碟"問世。
10月,邁拓(Maxtor)收購昆騰。
10.2001年:新的磁頭技術,此時的全部硬碟幾乎均採用GMR,該技術目前最新的為第四代GMR磁頭技術。
11.2003年1月,日立宣布完成20.5億美元的收購IBM硬碟事業部計劃,並成立日立環球儲存科技公司(Hitachi Global Storage
Technologies,Hitachi GST)。
12.2005年日立環儲和希捷都宣布了將開始大量採用磁碟垂直寫入技術(perpendicular recording),該原理是將平行於碟片的磁場方向改變為垂直(90度),更充分地利用的儲存空間。
13.2005年12月21日,硬碟製造商希捷宣布收購邁拓(Maxtor)。
14.2007年1月,日立環球儲存科技宣布將會發售全球首隻1Terabyte的硬碟,比原先的預定時間遲了一年多。硬碟的售價為399美元,平均每美元可以購得2.75GB硬碟空間。
15.2007年11月,Maxtor硬碟出廠的預先格式化的硬碟,被發現已植入會盜取在線游戲的帳號與密碼的木馬。
16.2010年12月,日立環球存儲科技公司日前同時宣布,將向全球OEM廠商和部分分銷合作夥伴推出3T
硬碟(15張)B、2TB和1.5TB Deskstar
7K3000硬碟系列。
17.2011年3月8日凌晨,WD西部數據公司宣布,將以現金加股票的形式,出資43億美元收購日立全資子公司,同為世界級硬碟大廠的日立環球存儲技術公司(HGST)。
編輯本段介面ATA全稱Advanced
Technol
ogy Attachment,是用傳統的40-pin 並口數據線連接主板與硬碟的,外部介面速度最大為133MB/s,因為並口線的抗干擾性太差,且排線占空間,不利計算機散熱,將逐漸被SATA 所取代。
IDEIDE的英文全稱為「Integrated Drive
Electronics」,即「電子集成驅動器」,俗稱PATA並口。
SATA使用SATA(Serial ATA)口的硬碟又叫串口硬碟,是未來PC機硬碟的趨勢。2001年,由Intel、APT、Dell、IBM、希捷、邁拓這幾大廠商組成的Serial ATA委員會正式確立了Serial ATA
1.0規范,2002年,雖然串列ATA的相關設備還未正式上市,但Serial ATA委員會已搶先確立了Serial ATA 2.0規范。Serial
ATA採用串列連接方式,串列ATA匯流排使用嵌入式時鍾信號,具備了更強的糾錯能力,與以往相比其最大的區別在於能對傳輸指令(不僅僅是數據)進行檢查,如果發現錯誤會自動矯正,這在很大程度上提高了數據傳輸的可靠性。串列介面還具有結構簡單、支持熱插拔的優點。
SATA ⅡSATA
Ⅱ是晶元巨頭Intel英特爾與硬碟巨頭Seagate希捷在SATA的基礎上發展起來的,其主要特徵是外部傳輸率從SATA的150MB/s進一步提高到了300MB/s,此外還包括NCQ(Native Command Queuing,原生命令隊列)、埠多路器(Port
Multiplier)、交錯啟動(Staggered Spin-up)等一系列的技術特徵。但是並非所有的SATA硬碟都可以使用NCQ技術,除了硬碟本身要支持NCQ之外,也要求主板晶元組的SATA控制器支持NCQ。
SATA
Ⅲ正式名稱為「SATARevision3.0」,是串列ATA國際組織(SATA-IO)在2009年5月份發布的新版規范,主要是傳輸速度翻番達到6Gbps,同時向下兼容舊版規范「SATARevision2.6」(也就是現在俗稱的SATA3Gbps),介面、數據線都沒有變動。SATA3.0介面技術標準是2007上半年英特爾公司提出的,由英特爾公司的存儲產品架構設計部技術總監Knut Grimsrud負責,Knut Grimsrud表示,SATA3.0的傳輸速率將達到6Gbps,將在SATA2.0的基礎上增加1倍。
SCSISCSI的英文全稱為「Small Computer System
Interface」(小型計算機系統介面),是同IDE(ATA)完全不同的介面,IDE介面是普通PC的標准介面,而SCSI並不是專門為硬碟設計的介面,是一種廣泛應用於小型機上的高速數據傳輸技術。SCSI介面具有應用范圍廣、多任務、帶寬大、CPU佔用率低,以及熱插拔等優點,但較高的價格使得它很難如IDE硬碟般普及,因此SCSI硬碟主要應用於中、高端伺服器和高檔工作站中。
光纖通道光纖通道的英文拼寫是Fibre Channel,和SCIS介面一樣光纖通道最初也不是為硬碟設計開發的介面技術,是專門為網路系統設計的,但隨著存儲系統對速度的需求,才逐漸應用到硬碟系統中。光纖通道硬碟是為提高多硬碟存儲系統的速度和靈活性才開發的,它的出現大大提高了多硬碟系統的通信速度。光纖通道的主要特性有:熱插拔性、高速帶寬、遠程連接、連接設備數量大等。
光纖通道是為在像伺服器這樣的多硬碟系統環境而設計,能滿足高端工作站、伺服器、海量存儲子網路、外設間通過集線器、交換機和點對點連接進行雙向、串列數據通訊等系統對高數據傳輸率的要求。
SAS介面SAS(Serial
Attached SCSI)即串列連接SCSI,是新一代的SCSI技術,和現在流行的Serial ATA(SATA)硬碟相同,都是採用串列技術以獲得更高的傳輸速度,並通過縮短連結線改善內部空間等。SAS是並行SCSI介面之後開發出的全新介面。此介面的設計是為了改善存儲系統的效能、可用性和擴充性,並且提供與SATA硬碟的兼容性。
編輯本段尺寸⒊5英寸台式機硬碟;風頭正勁,廣泛用於各種台式計算機。
硬碟內部⒉5英寸筆記本硬碟;廣泛用於筆記本電腦,桌面一體機,移動硬碟及攜帶型硬碟播放器。
⒈8英寸微型硬碟;廣泛用於超薄筆記本電腦,移動硬碟及蘋果播放器。
⒈3英寸微型硬碟;產品單一,三星獨有技術,僅用於三星的移動硬碟。

⒈0英寸微型硬碟;最早由IBM公司開發,MicroDrive微硬碟(簡稱MD)。因符合CFⅡ標准,所以廣泛用於單反數碼相機。
0.85英寸微型硬碟;產品單一,日立獨有技術,已知用於日立的一款硬碟手機,前Rio公司的幾款MP3播放器也採用了這種硬碟。
製造廠商希捷(Seagate)

希捷 logo
希捷公司成立於1979年,現為全球第二大的硬碟、磁碟和讀寫磁頭製造商,希捷在設計、製造和銷售硬碟領域居全球領先地位,提供用於企業、台式電腦、移動設備和消費電子的產品。2005年並購邁拓(Maxtor)2011年4月收購三星(Samsung)旗下的硬碟業務。

西部數據(Western Digital)

全球知名的硬碟廠商,現為全球第一大硬碟製造商,成立於1979年,目前總部位於美國加州,在世界各地設有分公司或辦事處,為全球五大洲用戶提供存儲器產品,2011年3月收購日立之後,市場份額達到將近百分之50,取代希捷成為名副其實的硬碟老大。

日立(HITACHI)
HITACHI日立集團是全球最大的綜合跨國集團之一.台式電腦硬碟,筆記本硬碟都有生產。於2002年並購IBM硬碟生產事業部門。於2011年3月被西部數據收購。
東芝(TOSHIBA)
日本最大的半導體製造商,亦是第二大綜合電機製造商,隸屬於三井集團旗下。主要生產移動存儲產品。

三星(Samsung)
韓國最大的企業集團三星集團的簡稱。生產的硬碟提供用於台式電腦、移動設備和消費電子的產品。2011年4月19日,希捷正式宣布以13.75億美元(現金加股票的方式)收購三星硬碟業務。2011年12月20日,希捷宣布已完成對三星電子有限公司旗下硬碟業務的收購交易。

編輯本段物理結構1.磁頭
硬碟內部結構
磁頭是硬碟中最昂貴的部件,也是硬碟技術中最重要和最關鍵的一環。傳統的磁頭是讀寫合一的電磁感應式磁頭,但是,硬碟的讀、寫卻是兩種截然不同的操作,為此,這種二合一磁頭在設計時必須要同時兼顧到讀/寫兩種特性,從而造成了硬碟設計上的局限。而MR磁頭(Magnetoresistive
heads),即磁阻磁頭,採用的是分離式的磁頭結構:寫入磁頭仍採用傳統的磁感應磁頭(MR磁頭不能進行寫操作),讀取磁頭則採用新型的MR磁頭,即所謂的感應寫、磁阻讀。這樣,在設計時就可以針對兩者的不同特性分別進行優化,以得到最好的讀/寫性能。另外,MR磁頭是通過阻值變化而不是電流變化去感應信號幅度,因而對信號變化相當敏感,讀取數據的准確性也相應提高。而且由於讀取的信號幅度與磁軌寬度無關,故磁軌可以做得很窄,從而提高了碟片密度,達到200MB/英寸2,而使用傳統的磁頭只能達到20MB/英寸2,這也是MR磁頭被廣泛應用的最主要原因。目前,MR磁頭已得到廣泛應用,而採用多層結構和磁阻效應更好的材料製作的GMR磁頭(Giant
Magnetoresistive heads)也逐漸普及。
2.磁軌當磁碟旋轉時,磁頭若保持在一個位置上,則每個磁頭都會在磁碟表面劃出一個圓形軌跡,這些圓形軌跡就叫做磁軌。這些磁軌用肉眼是根本看不到的,因為它們僅是盤面上以特殊方式磁化了的一些磁化區,磁碟上的信息便是沿著這樣的軌道存放的。相鄰磁軌之間並不是緊挨著的,這是因為磁化單元相隔太近時磁性會相互產生影響,同時也為磁頭的讀寫帶來困難。一張1.44MB的3.5英寸軟盤,一面有80個磁軌,而硬碟上的磁軌密度則遠遠大於此值,通常一面有成千上萬個磁軌。
3.扇區磁碟上的每個磁軌被等分為若干個弧段,這些弧段便是磁碟的扇區,每個扇區可以存放512個位元組的信息,磁碟驅動器在向磁碟讀取和寫入數據時,要以扇區為單位。1.44MB3.5英寸的軟盤,每個磁軌分為18個扇區。
4.柱面硬碟通常由重疊的一組碟片構成,每個盤面都被劃分為數目相等的磁軌,並從外緣的「0」開始編號,具有相同編號的磁軌形成一個圓柱,稱之為磁碟的柱面。磁碟的柱面數與一個盤單面上的磁軌數是相等的。無論是雙盤面還是單盤面,由於每個盤面都有自己的磁頭,因此,盤面數等於總的磁頭數。所謂硬碟的CHS,即Cylinder(柱面)、Head(磁頭)、Sector(扇區),只要知道了硬碟的CHS的數目,即可確定硬碟的容量,硬碟的容量=柱面數*磁頭數*扇區數*512B。

編輯本段邏輯結構3D參數很久以前,硬碟的容量還非常小的時候,人們採用與軟盤類似的結構生產硬碟。也就是硬碟碟片的每一條磁軌都具有相同的扇區數。由此產生了所謂的3D參數(Disk Geometry). 即磁頭數(Heads),柱面數(Cylinders),扇區數(Sectors),以及相應的定址方式。

其中:

磁頭數(Heads)表示硬碟總共有幾個磁頭,也就是有幾面碟片, 最大為255 (用8 個二進制位存儲)

柱面數(Cylinders) 表示硬碟每一面碟片上有幾條磁軌,最大為1023(用 10 個二進制位存儲)

扇區數(Sectors) 表示每一條磁軌上有幾個扇區,最大為63(用 6個二進制位存儲)

每個扇區一般是512個位元組, 理論上講這不是必須的,但好像沒有取別的值的。

所以磁碟最大容量為:

255 * 1023 * 63 * 512 / 1048576 = 7.837 GB (1M
=1048576 Bytes)

或硬碟廠商常用的單位:

255 * 1023 * 63 * 512 / 1000000 = 8.414 GB (1M
=1000000 Bytes)

在CHS 定址方式中,磁頭,柱面,扇區的取值范圍分別為0到 Heads - 1。0 到Cylinders - 1。1 到Sectors
(注意是從1 開始)。
基本Int 13H 調用BIOS
Int 13H 調用是BIOS提供的磁碟基本輸入輸出中斷調用,它可以完成磁碟(包括硬碟和軟盤)的復位,讀寫,校驗,定位,診,格式化等功能。它使用的就是CHS 定址方式,因此最大識能訪問 8 GB 左右的硬碟(本文中如不作特殊說明,均以 1M = 1048576 位元組為單位)。
現代硬碟結構在老式硬碟中,由於每個磁軌的扇區數相等,所以外道的記錄密度要遠低於內道,因此會浪費很多磁碟空間
(與軟盤一樣)。為了解決這一問題,進一步提高硬碟容量,人們改用等密度結構生產硬碟。也就是說,外圈磁軌的扇區比內圈磁軌多,採用這種結構後,硬碟不再具有實際的3D參數,定址方式也改為線性定址,即以扇區為單位進行定址。

為了與使用3D定址的老軟體兼容(如使用BIOSInt13H介面的軟體), 在硬碟控制器內部安裝了一個地址翻譯器,由它負責將老式3D參數翻譯成新的線性參數。這也是為什麼現在硬碟的3D參數可以有多種選擇的原因(不同的工作模式,對應不同的3D參數,如 LBA,LARGE,NORMAL)。
擴展Int 13H雖然現代硬碟都已經採用了線性定址,但是由於基本Int13H 的制約,使用BIOS Int
13H 介面的程序,如 DOS 等還只能訪問8
G以內的硬碟空間。為了打破這一限制,Microsoft 等幾家公司制定了擴展Int 13H 標准(Extended Int13H),採用線性定址方式存取硬碟,所以突破了 8 G的限制,而且還加入了對可拆卸介質(如活動硬碟) 的支持。

編輯本段基本參數一、容量作為計算機系統的數據存儲器,容量是硬碟最主要的參數。

硬碟的容量以兆位元組(MB/MiB)或千兆位元組(GB/GiB)為單位,1GB=1000MB而1GiB=1024MiB。但硬碟廠商通常使用的是GB,也就是1G=1000MB,而Windows系統,就依舊以「GB」字樣來表示「GiB」單位(1024換算的),因此我們在BIOS中或在格式化硬碟時看到的容量會比廠家的標稱值要小。

硬碟的容量指標還包括硬碟的單碟容量。所謂單碟容量是指硬碟單片碟片的容量,單碟容量越大,單位成本越低,平均訪問時間也越短。

一般情況下硬碟容量越大,單位位元組的價格就越便宜,但是超出主流容量的硬碟略微例外。
二、轉速轉速(Rotational Speed 或Spindle speed),是硬碟內電機主軸的旋轉速度,也就是硬碟碟片在一分鍾內所能完成的最大轉數。轉速的快慢是標示硬碟檔次的重要參數之一,它是決定硬碟內部傳輸率的關鍵因素之一,在很大程度上直接影響到硬碟的速度。硬碟的轉速越快,硬碟尋找文件的速度也就越快,相對的硬碟的傳輸速度也就得到了提高。硬碟轉速以每分鍾多少轉來表示,單位表示為RPM,RPM是Revolutions
Per minute的縮寫,是轉/每分鍾。RPM值越大,內部傳輸率就越快,訪問時間就越短,硬碟的整體性能也就越好。

硬碟的主軸馬達帶動碟片高速旋轉,產生浮力使磁頭飄浮在碟片上方。要將所要存取資料的扇區帶到磁頭下方,轉速越快,則等待時間也就越短。因此轉速在很大程度上決定了硬碟的速度。

家用的普通硬碟的轉速一般有5400rpm、7200rpm幾種,高轉速硬碟也是現在台式機用戶的首選;而對於筆記本用戶則是4200rpm、5400rpm為主,雖然已經有公司發布了10000rpm的筆記本硬碟,但在市場中還較為少見;伺服器用戶對硬碟性能要求最高,伺服器中使用的SCSI硬碟轉速基本都採用10000rpm,甚至還有15000rpm的,性能要超出家用產品很多。較高的轉速可縮短硬碟的平均尋道時間和實際讀寫時間,但隨著硬碟轉速的不斷提高也帶來了溫度升高、電機主軸磨損加大、工作噪音增大等負面影響。
三、平均訪問時間平均訪問時間(Average Access Time)是指磁頭從起始位置到達目標磁軌位置,並且從目標磁軌上找到要讀寫的數據扇區所需的時間。

平均訪問時間體現了硬碟的讀寫速度,它包括了硬碟的尋道時間和等待時間,即:平均訪問時間=平均尋道時間+平均等待時間。

硬碟的平均尋道時間(Average Seek Time)是指硬碟的磁頭移動到盤面指定磁軌所需的時間。這個時間當然越小越好,目前硬碟的平均尋道時間通常在8ms到12ms之間,而SCSI硬碟則應小於或等於8ms。

硬碟的等待時間,又叫潛伏期(Latency),是指磁頭已處於要訪問的磁軌,等待所要訪問的扇區旋轉至磁頭下方的時間。平均等待時間為碟片旋轉一周所需的時間的一半,一般應在4ms以下。
四、傳輸速率傳輸速率(Data
Transfer Rate) 硬碟的數據傳輸率是指硬碟讀寫數據的速度,單位為兆位元組每秒(MB/s)。硬碟數據傳輸率又包括了內部數據傳輸率和外部數據傳輸率。

內部傳輸率(Internal Transfer Rate) 也稱為持續傳輸率(Sustained
Transfer Rate),它反映了硬碟緩沖區未用時的性能。內部傳輸率主要依賴於硬碟的旋轉速度。

外部傳輸率(External Transfer Rate)也稱為突發數據傳輸率(Burst Data Transfer
Rate)或介面傳輸率,它標稱的是系統匯流排與硬碟緩沖區之間的數據傳輸率,外部數據傳輸率與硬碟介面類型和硬碟緩存的大小有關。

目前Fast ATA介面硬碟的最大外部傳輸率為16.6MB/s,而Ultra
ATA介面的硬碟則達到33.3MB/s。2012年12月,兩80後研製出傳輸速度每秒1.5GB的固態硬碟。[1]
使用SATA(Serial ATA)口的硬碟又叫串口硬碟,是未來PC機硬碟的趨勢。2001年,由Intel、APT、Dell、IBM、希捷、邁拓這幾大廠商組成的Serial
ATA委員會正式確立了Serial ATA 1.0規范。2002年,雖然串列ATA的相關設備還未正式上市,但Serial ATA委員會已搶先確立了Serial
ATA 2.0規范。Serial ATA採用串列連接方式,串列ATA匯流排使用嵌入式時鍾信號,具備了更強的糾錯能力,與以往相比其最大的區別在於能對傳輸指令(不僅僅是數據)進行檢查,如果發現錯誤會自動矯正,這在很大程度上提高了數據傳輸的可靠性。串列介面還具有結構簡單、支持熱插拔的優點。
五、緩存緩存(Cache memory)是硬碟控制器上的一塊內存晶元,具有極快的存取速度,它是硬碟內部存儲和外界介面之間的緩沖器。由於硬碟的內部數據傳輸速度和外界介面傳輸速度不同,緩存在其中起到一個緩沖的作用。緩存的大小與速度是直接關繫到硬碟的傳輸速度的重要因素,能夠大幅度地提高硬碟整體性能。當硬碟存取零碎數據時需要不斷地在硬碟與內存之間交換數據,有大緩存,則可以將那些零碎數據暫存在緩存中,減小外系統的負荷,也提高了數據的傳輸速度

編輯本段數據保護1.S.M.A.R.T.技術

S.M.A.R.T.技術的全稱是Self-Monitoring,Analysis and Reporting
Technology,即「自監測、分析及報告技術」。在ATA-3標准中,S.M.A.R.T.技術被正式確立。S.M.A.R.T.監測的對象包括磁頭、磁碟、馬達、電路等,由硬碟的監測電路和主機上的監測軟體對被監測對象的運行情況與歷史記錄及預設的安全值進行分析、比較,當出現安全值范圍以外的情況時,會自動向用戶發出警告,而更先進的技術還可以提醒網路管理員的注意,自動降低硬碟的運行速度,把重要數據文件轉存到其它安全扇區,甚至把文件備份到其它硬碟或存儲設備。通過S.M.A.R.T.技術,確實可以對硬碟潛在故障進行有效預測,提高數據的安全性。但我們也應該看到,S.M.A.R.T.技術並不是萬能的,它只能對漸發性的故障進行監測,而對於一些突發性的故障,如碟片突然斷裂等,硬碟再怎麼smart也無能為力了。因此不管怎樣,備份仍然是必須的。

2.DFT技術

DFT(Drive Fitness Test,驅動器健康檢測)技術是IBM公司為其PC硬碟開發的數據保護技術,它通過使用DFT程序訪問IBM硬碟里的DFT微代碼對硬碟進行檢測,可以讓用戶方便快捷地檢測硬碟的運轉狀況。

據研究表明,在用戶送回返修的硬碟中,大部分的硬碟本身是好的。DFT能夠減少這種情形的發生,為用戶節省時間和精力,避免因誤判造成數據丟失。它在硬碟上分割出一個單獨的空間給DFT程序,即使在系統軟體不能正常工作的情況下也能調用。

DFT微代碼可以自動對錯誤事件進行登記,並將登記數據保存到硬碟上的保留區域中。DFT微代碼還可以實時對硬碟進行物理分析,如通過讀取伺服位置錯誤信號來計算出碟片交換、伺服穩定性、重復移動等參數,並給出圖形供用戶或技術人員參考。這是一個全新的觀念,硬碟子系統的控制信號可以被用來分析硬碟本身的機械狀況。

而DFT軟體是一個獨立的不依賴操作系統的軟體,它可以在用戶其他任何軟體失效的情況下運行。

3.加密技術
現代社會人們對隱私的保護欲越來越強烈,硬碟加密技術開始發展。文字、圖形、數字密碼保護是最基本的形式,隨著科技的進步,生物識別技術開始應用到硬碟技術當中。

編輯本段擴展分區由於主分區表中只能分四個分區,無法滿足需求,因此設計了一種擴展分區格式。基本上說,擴展分區的信息是以鏈表形式存放的,但也有一些特別的地方。首先, 主分區表中要有一個基本擴展分區項,所有擴展分區都隸屬於它,也就是說其他所有擴展分區的空間都必須包括在這個基本擴展分區中。對於DOS
/ Windows 來說,擴展分區的類型為0x05。除基本擴展分區以外的其他所有擴展分區則以鏈表的形式級聯存放, 後一個擴展分區的數據項記錄在前一個擴展分區的分區表中,但兩個擴展分區的空間並不重疊。

擴展分區類似於一個完整的硬碟,必須進一步分區才能使用。但每個擴展分區中只能存在一個其他分區。此分區在
DOS/Windows環境中即為邏輯盤。因此每一個擴展分區的分區表(同樣存儲在擴展分區的第一個扇區中)中最多隻能有兩個分區數據項(包括下一個擴展分區的數據項)。

J. 硬碟的工作原理是什麼

硬碟的物理結構包括磁頭、磁軌、扇區和柱面。其中,磁頭是硬碟最關鍵的部分,是硬碟進行讀寫的「筆尖」,每一個盤面(若將磁頭比喻作「筆」的話,那盤面即是「筆」下的「紙」)都有自己的一個磁頭。磁軌是指磁碟旋轉時由於磁頭始終保持在一個位置上而在磁碟表面劃出的圓形軌跡,這些磁軌是肉眼看不到的,它們只是磁碟面上的一些磁化區,使信息沿這種軌道存放。扇區是指磁軌被等分為的若干弧段,是磁碟驅動器向磁碟讀寫數據的基本單位,其中每個扇區可以存放512位元組的信息。而柱面,顧名思義,為一個圓柱形面,由於磁碟是由一組重疊的碟片組成的,每個盤面都被劃分為等量的磁軌並由外到里依此編號,具有相同編號的磁軌形成的便是柱面,因此磁碟的柱面數與其一盤面的磁軌數是相等的。

閱讀全文

與電腦硬碟工作原理相關的資料

熱點內容
電腦怎麼轉換系統賬戶 瀏覽:701
看4k60幀視頻電腦配置 瀏覽:820
電腦主機的風扇多少v的 瀏覽:585
孩子用電腦耳機哪個牌子好 瀏覽:972
電腦能安裝兩種顯卡驅動 瀏覽:256
去除廣告的電腦軟體 瀏覽:792
電腦開機按f11怎麼刪除 瀏覽:750
電腦里有什麼計算機二級的軟體 瀏覽:612
昂達平板電腦白屏 瀏覽:707
電腦怎麼綁定無線網 瀏覽:19
最爛的電腦配置 瀏覽:514
電腦系統總是崩潰 瀏覽:536
電腦開機不顯示pxe為什麼還是進不了系統 瀏覽:293
電腦卡住然後黑屏了無信號 瀏覽:740
微信電腦版怎麼用啊 瀏覽:494
安卓數據傳到蘋果用什麼軟體好 瀏覽:600
筆記本電腦帶有獨立顯卡要多少錢 瀏覽:26
電腦連手機wifi密碼錯誤 瀏覽:186
mac電腦屏幕旋轉90黑屏 瀏覽:111
蘋果檢測睡眠軟體 瀏覽:149