⑴ 台式電腦的主要原理
個人電腦(PC:personal computer )的主要結構:
主機:主板、CPU (中央處理器)、主要儲存器(內存)、擴充卡(顯示卡音效卡網卡等 有些主板可以整合這些)、電源供應器、光碟機、次要儲存器(硬碟)、軟碟機外設:顯示器、鍵盤、滑鼠(音箱、攝像頭,外置數據機MODEM 等)。
盡管計算機技術自20世紀40年代第一台電子通用計算機誕生以來有了令人目眩的飛速發展,但是今天計算機仍然基本上採用的是存儲程序結構,即馮·諾伊曼結構。這個結構實現了實用化的通用計算機。
存儲程序結構間將一台計算機描述成四個主要部分:算術邏輯單元(ALU),控制電路,存儲器,以及輸入輸出設備(I/O)。這些部件通過一組一組的排線連接並且由一個時鍾來驅動。
概念上講,一部計算機的存儲器可以被視為一組「細胞」單元。每一個「細胞」都有一個編號,稱為地址;又都可以存儲一個較小的定長信息。這個信息既可以是指令,也可以是數據。原則上,每一個「細胞」都是可以存儲二者之任一的。
20世紀80年代以來ALU和控制單元逐漸被整合到一塊集成電路上,稱作微處理器。這類計算機的工作模式十分直觀:在一個時鍾周期內,計算機先從存儲器中獲取指令和數據,然後執行指令,存儲數據,再獲取下一條指令。這個過程被反復執行,直至得到一個終止指令。
由控制器解釋,運算器執行的指令集是一個精心定義的數目十分有限的簡單指令集合。
一般可以分為四類:1)、數據移動2)、數邏運算3)、條件驗證4)、指令序列改易。
指令如同數據一樣在計算機內部是以二進制來表示的。比如說,10110000就是一條Intel x86系列微處理器的拷貝指令代碼。某一個計算機所支持的指令集就是該計算機的機器語言。因此,使用流行的機器語言將會使既成軟體在一台新計算機上運行得更加容易。所以對於那些機型商業化軟體開發的人來說,它們通常只會關注一種或幾種不同的機器語言。
更加強大的小型計算機,大型計算機和伺服器可能會與上述計算機有所不同。它們通常將任務分擔給不同的CPU來執行。今天,微處理器和多核個人電腦也在朝這個方向發展。
超級計算機通常有著與基本的存儲程序計算機 類的電子控制開關來實現使用2們通常有著數以千計的CPU,不過這些設計似乎只對特定任務有用。在各種計算機中,還有一些微控制器採用令程序和數據分離的哈佛架構。
⑵ 計算機電源工作原理
計算機電源是將220V的交流電通過變壓、整流轉換成穩定的12v\6V\3.3V的直流電,電源帶有各種不同的介面,供給電腦各種硬體使用。
⑶ 電腦電源(輔助電路)的工作原理
不明白你的「輔助電路」電路是什麼意思,PC電源輸出多路,其中有一路5V叫StandBy,它是一直輸出的,只要電源供電。其餘各路輸出是看電腦開機還是關機了,關機時這些路都不輸出的,只有開機時輸出。
電腦開關機按鈕由那路5V(standby)供電給電源輸入信號控制其它路輸出。
⑷ 電腦電源的原理及修理
二
、常見電腦電源故障分析與維修
1.電源無輸出
當電源在有負載情況下,測量不出各輸出端的直流電壓時即認為電源無輸出。這時應先打開電源檢查保險絲,通過保險絲熔斷情況來分析故障范圍。
1)保險絲熔斷並發黑
說明有嚴重短路現象,應重點檢查整流濾波和功率逆變電路。
(1)交流濾波電容C3、C4因交流浪涌電壓擊穿而短路,有些ATX電源交流濾波電路比較復雜,應檢查是否有短路的元件。
(2)交流主迴路橋式整流電路中某個二極體擊穿。損壞原因:由於直流濾波電容C5、C6一般為330μF或470μF的大容量電解電容,瞬間充電電流可達20A以上。所以瞬間大容量的浪涌電流易造成整流橋中某個性能略差的整流管燒壞。另外交流浪涌電壓也會擊穿整流二極體而短路。
(3)整流濾波電路中的直流濾波電容C5、C6擊穿,甚至發生爆裂現象。損壞原因:由於大容量的電解電容耐壓一般為200V左右,而實際工作電壓達到150V左右,接近額定值。因此,當輸入電壓產生波動或某些電解電容質量較差時,就容易發生擊穿電容現象。另外當電解電容發生漏電時,就會嚴重發熱而爆裂。
(4)直流變換電路中的功率開關晶體管VT1、VT2和換向二極體VD1、VD2擊穿損壞。損壞原因:由於整流濾波後的輸出電壓一般高達300V左右,逆變功率開關管的負載又是感性負載,漏感所形成的電壓峰值可能接近於600V,而VT1、VT2的耐壓Vceo只有450V左右。因此當輸入電壓偏高時,某些耐壓偏低的開關管將被擊穿。所以可選擇耐壓更高的功率開關管。
2)保險絲熔斷但不發黑
說明不是短路引起保險絲熔斷。
(1)通電瞬間燒斷保險,多為瞬間的大電流將保險沖斷,如開機時直流濾波電容的充電電流。
(2)使用過程中燒斷保險,多為負載過大所致。
3)保險絲未熔斷
如電源無輸出。而保險絲完好,則應檢查電源控制線路中是否有開路、短路現象,以及過壓、過流保護電路是否動作,輔助電源是否完好等。
(1)交流輸入迴路的限流電阻THR開路,此時測不到300V直流電壓。開關電源採用220V直接整流濾波電路,當接通交流電壓時會有較大的浪涌電流(電容充電電流),浪涌電流易造成限流電阻或保險絲熔斷。
(2)輔助電源無+5V電壓輸出。應重點檢查輔助電源電路中的相關元件,如輔助電源電路VT15振盪管損壞,VZ16穩壓管、VD30、VD41二極體擊穿短路,限流電阻R72或啟動電阻R76斷路等。
(3)脈寬調制晶元TL494損壞,電壓比較器LM393損壞。另外如IC10、VT7短路,會使IC1的4腳的電壓為高電平,而處於待機狀態。
(4)直流輸出端有短路,此時短路保護會起作用。其現象是開機瞬間電源指示亮,然後馬上又熄滅。應仔細檢查±5V、±12V線路是否有破損或電路板上有擊穿的器件。一般最為常見+5V直流迴路的肖特基二級管被擊穿。
(5)直流輸出過壓,此時過壓保護會起作用。此時應檢查+5V、+12V自動穩壓控制電路是否損壞,使自動穩壓控制失效。
2.受控啟動後直流電源無輸出
(1)T2原邊VT3、VT4推動管損壞,R54電阻阻值變大;
(2)半橋功率變換電路開關管VT1、VT2至少有一個開路;
(3)防偏磁電容C8容量變小或開路。
3.電源有輸出,但開機不自檢
這主要是因為電源的PW-OK信號延遲時間不夠或無輸出造成的。開機後,用電壓表測量PW-OK的輸出端(電源插頭的8腳)有無+5V。此時應檢查比較器LM393是否損壞。如因延時不夠,則應檢查延時電路中的電阻R104和電容C60。
4.電源負載能力差
電源負載能力差主要表現為:電源在輕負載情況下,如只向系統板、軟碟機供電時,能正常工作,而在配上大硬碟、擴充其他設備時,往往電源工作就不正常。這種情況一般是功率變換電路的開關管VT1、VT2性能不好,濾波電容器C5、C6容量不足。更換濾波電容時應注意2個電容的容量和耐壓值必須一致。
5.電源輸出電壓不準
如果只有一檔電壓偏離額定值,而其他各檔電壓均正常,則是該檔電壓的集成穩壓電路或整流二極體損壞。如全部偏離額定值,則是由IC1的1、2腳誤差放大器,R39、C32誤差放大器負反饋迴路,取樣電阻R33、R34、R35、構成+5V、+12V自動穩壓控制電路有故障。
在更換電源電路中的二級管時要注意,因為逆變器工作頻率較高,一般大於20kHz,另外負載電流也較大,故電源中+5V檔採用肖特基高頻整流二極體SBD,其餘各檔也採用恢復特性的高頻整流二極體FRD。所以在更換時要盡可能找到相同類型的整流二極體,以免再次損壞。
6.風扇不轉或發生響聲
計算機電源的風扇通常採用接在+12V直流輸出端的直流風扇。如果電源輸入輸出一切正常,而風扇不轉,多為風扇電機損壞。如果發出響聲,其原因之一是由於機器長期的運轉或運輸過程中的激烈振動引起風扇的4個固定螺釘松動;其二是風扇內部灰塵太多或含油軸承缺油,只要及時清理或加入適量的高級潤滑油,故障就可排除。
⑸ ATX(電腦)電源電路圖原理分析
到正電源一般須接一隻電阻(稱為上拉電阻,選3-15K)。選不同阻值的上拉電阻會影響輸出端高電位的值。因為當輸出晶體三極體截止時,它的集電極電壓基本上取決於上拉電阻與負載的值。
按管腳的順序把內部四個比較器設為A、B 、C 、D 比較器。494和339再配合其他電路,共同完成ATX電源的穩壓,產生PW-OK信號及各種保護功能。
⑹ 計算機電源分為幾種它的工作原理是什麼它對整個計算機有什麼意義
計算機電源對整個計算機系統形象地來說相當於人的胃。
計算機屬於弱電產品,也就是說部件的工作電壓比較低,一般在正負12伏以內,並且是直流電。而普通的市電為220伏(有些國家為110伏)交流電,不能直接在計算機部件上使用。因此計算機和很多家電一樣需要一個電源部分,負責將普通市電轉換為計算機可以使用的電壓,一般安裝在計算機內部。計算機的核心部件工作電壓非常低,並且由於計算機工作頻率非常高,因此對電源的要求比較高。目前計算機的電源為開關電路,將普通交流電轉為直流電,再通過斬波控制電壓,將不同的電壓分別輸出給主板、硬碟、光碟機等計算機部件。
⑺ 電腦開關電源原理圖
僅以此圖供參考,各廠家生產的開關電源原理圖大致類似,必須符合ATX電源的標准要求。
⑻ 電腦 主機 電源 是什麼原理起個什麼作用電源是個變壓器嗎
直接接就燒掉了。
電腦主機用的電源就是一個變壓器,把220V的電源變成12V、5V等電壓,然後載入到主板、硬碟等各個器件上,使它們可以正常工作。